陈旭

职称:副教授

学位:博士

[2024]

  • Wu S., Li J., Chen X.*, Guan Z. Seismic residual displacement for structural system with partial self-centering ability. Journal of Building Engineering, 2024, 95, 110123.

  • Gao H., Li J., Chen X.*, Shen Y. Combined concrete and cable restrainers to prevent longitudinal unseating of highway bridges during earthquakes. Engineering Structures, 2024, 314: 118388.

  • Chen X, Wu S, Li J, et al. Seismic performance assessment and design procedure of base-isolated bridges with lead-rubber-bearing and negative stiffness springs (LRB-NS). Engineering Structures, 2024, 306: 117871.

  • 武少威,项敬辉,李建中,陈旭*.直接基于位移的非规则减隔震桥梁抗震设计.振动与冲击,2024,43(03):128-135.

  • Zhong X, Shen Y, Chen X*, Li J*, Wang Y. Seismic performance of self-centering bridge piers with rocking mechanical hinges. Engineering Structures, 2024, 298: 117032.

[2023]

  • Xu, W., Gu, M., Chen, X., Li, J. Seismic performance of precast segemental piers with a novel combined half-grouted sleeve-socket (HGS-S) connection. Soil Dynamics and Earthquake Engineering, 2023, 175, 108220.

  • Wang, R., Ma, B., Chen, X.* Experimental study on bond performance between UHPC and steel bars. Journal of Building Engineering, 2023, 79, 107861.

  • Wang, R., Ma, B., Chen, X.* Experimental study on bond performance between UHPC and steel bars. Journal of Building Engineering, 2023, 79, 107861.

  • Xiong, J., Chen, X.* Seismic Performance of Double-column Tall Pier Bents using Fusing Connections. Soil Dynamics and Earthquake Engineering, 2023, 170, 107924. 

  • Xiang, N., Feng, Y., Chen, X.*. Novel fiber-based seismic response modelling and design method ofpartially CFST bridge piers considering local buckling effect. Soil Dynamics and Earthquake Engineering, 2023, 170, 107911. 

  • Chen, X., Domenico D, Li, C. Seismic resilient design of rocking tall piers using inerter-based systems, Engineering Structures, 2023, 281: 115819.

  • Chen, X., Spencer, B. F., Li, J., Guan, Z., Pang, Y. Optimization of distribution patterns of link beams in adouble-column tall pier bent subjected to earthquake excitations, Earthquake Engineering and Structural Dynamics, 2023.

  • Chen, X., Li, J., Guan, Z. Influence of Ground Motion Characteristics on Higher-mode Effects and Design Strategy for Tall Pier Bridges, Journal of Bridge Engineering, 2023, 28(1): 04022126.


[2022]

  • Wang, R., Ma, B. & Chen, X.*. Seismic performance of pre-fabricated segmental bridges with an innovative layered-UHPC connection, Bulletin of Earthquake Engineering, 2022, 20(12): 6943-6967. 

  • Chen, X., Ikago, K., Guan, Z., Li, J. Wang, X. Lead-Rubber-Bearing with Negative Stiffness Springs (LRB-NS) for Base-Isolation Seismic Design of Resilient Bridges: A Theoretical Feasibility Study. Engineering Structures, 2022, 266:114601. (ESI Highly Cited Paper, Top 1%)

  • Li, C., Li, H., Chen, X.* Seismic response estimation of tall pier bridges using deep learning techniques, Engineering Structures, 2022, 266:114501.

  • Guo, W., Guan, Z., Li, J., Chen, X.* Pounding performance between a seismic-isolated long-span girder bridge and its approaches, Engineering Structures, 2022, 262: 114397.

  • Zhang, H., Ye, Z., Chen, X., Yao, W. Seismic response mitigation of girder displacement of cable-stayed bridge using inerter systems, Structures, 2022, 39: 928-944.

  • Chen, X., Wu, P., Li, C. Seismic resilient design of tall pier bridges using base isolation with friction pendulum bearings, Structures, 2022, 38: 618-629 (SCI, JCR Q2)

  • Chen X, Ding H, Li, C. A quasi-tuned-mass-damper design concept for mitigating the dynamic displacement demand of tall piers. Soil Dynamics and Earthquake Engineering, 2022: 107172. 

  • Chen X, Xiang N, Guan Z, et al. Seismic vulnerability assessment of tall pier bridges under mainshock-aftershock-like earthquake sequences using vector-valued intensity measure. Engineering Structures, 2022, 253: 113732. (ESI Highly Cited Paper, Top 1%; ESI Hot Paper, Top 0.1%)

  • Chen X*, Xiong J. Seismic resilient design with base isolation device using friction pendulum bearing and viscous damper. Soil Dynamics and Earthquake Engineering, 2022: 107073. (ESI Highly Cited Paper, Top 1%)

  • Chen X., Guan Z., Li J., Wang X. Feasibility investigation of a negative stiffness-based base-isolation seismic design for bridges. 8th World Conference on Structural Control and Monitoring (8WCSCM), 2022, Orlando, Florida, U.S.A. (Oral)


[2021]

  • Li, C., Li, H., Chen, X.* A framework for fast estimation of structural seismic responses using ensemble machine learning model, Smart Structures and Systems, 2021, 28(3): 425-411.

  • Wang, R., Ma, B., Chen, X.* Seismic performance of pre-fabricated segmental bridge piers with grouted splice sleeve connections, Engineering Structures, 2021, 229: 111668.

  • Chen, X., Xiang, N., & Li, C. Influence of higher-order modes of slender tall pier bridge columns on the seismic performance of pile foundations, Soil Dynamics and Earthquake Engineering, 2021, 142: 106543. 

  • Chen, X., Li, C. Seismic assessment of tall pier bridges with double-column bents retrofitted with buckling restrained braces subjected to near-fault motions, Engineering Structures, 2021, 226: 111390. 

  • Chen, X.*, Li, J. Seismic fragility analysis for tall pier bridges with rocking foundations. Advances in Bridge Engineering, 2021.

  • 陈旭, 李春祥. 考虑桩-土相互作用的高墩桥梁抗震性能. 同济大学学报: 自然科学版,2021, 49(6):159-166. 


[2020]

  • Chen, X., Li, C. Seismic assessment of earthquake-resilient tall pier bridges using rocking foundations retrofitted with various energy dissipation devices, Structural Control and Health Monitoring, 2020, 27(11):e2625. 

  • Chen, X., Guan, Z. Extension of a simplified procedure for estimating nonlinear seismic responses of tall pier bridge systems, European Journal of Environmental and Civil Engineering, 2020: 1-20. 

  • Chen X, Li C. Seismic performance of tall pier bridges retrofitted with lead rubber bearings and rocking foundation. Engineering Structures, 2020, 212: 110529. 

  • Chen X., N. L. Xiang, J. Z. Li, Z. G. Guan. Influence of Near-fault Pulse-like Ground Motion Characteristics on Seismic Performance of Tall Pier Bridges with Fragility Analysis, Journal of Earthquake Engineering, 2020:1-22. 

  • Chen X. System Fragility Assessment of Tall-Pier Bridges Subjected to Near-Fault Ground Motions. Journal of Bridge Engineering, 2020, 25(3): 04019143. 

  • Chen X, Li J, Guan Z. Fragility analysis of tall pier bridges subjected to near-fault pulse-like ground motions. Structure and Infrastructure Engineering, 2020,16 (8): 1082-1095.

  • Xiang N., Chen X., Shahria M. Probabilistic seismic fragility and loss analysis of concrete bridge piers with superelastic shape memory alloy-steel coupled reinforcing bars. Engineering Structure, 2020. 

  • Chen X., Li C. Seismic Assessment of Tall Pier Bridges Using Rocking Foundation Retrofitted with Inerter System. 17th World Conference on Earthquake Engineering (17 WCEE), 2020, Sendai, Japan. (Oral)


[Pre-2020]

  • Chen, X., Guan, Z., Spencer Jr, B. F., & Li, J. A simplified procedure for estimating nonlinear seismic demand of tall piers. Engineering Structures, 2018, 174, 778-791.

  • Chen, X., Guan, Z., Li, J., & Spencer Jr, B. F. Shake Table Tests of Tall-Pier Bridges to Evaluate Seismic Performance. Journal of Bridge Engineering, 2018, 23(9), 04018058. 

  • Guan, Z., Chen X., & Li J. Experimental investigation of the seismic performance of bridge models with conventional and rocking pile group foundation. Engineering Structures, 2018, 168: 889-902. 

  • Chen, X., Li J. Contributions of High Modes of Tall Piers under Seismic Excitation. IABSE Nantes 2018

  • Chen, X., Li J., Guan Z. Effects of Higher Modes on Tall Piers. IABSE Guangzhou 2016. (Oral)

  • 陈旭,李建中,刘笑显. 墩身高阶振型对高墩地震反应影响. 同济大学学报: 自然科学版, 2017, 45(2):159-166.

  • 陈旭,李建中. 主塔塔形对独塔斜拉桥主塔横向地震反应影响. 世界地震工程, 2015, 31(001): 240-246. 

  • 刘笑显,李建中,陈旭. X 形弹塑性钢挡块对简支梁桥横向地震反应影响. 振动与冲击, 2015, 34(2). 

  • 陈旭,李建中. 结构动力分析中Rayleigh阻尼合理取值研究. 结构工程师, 2013, 29(5): 28-33.

最后更新时间:--
Copyright © 2020 civileng.tongji.edu.cn 同济大学土木工程学院 All rights reserved.
地址:上海市四平路1239号同济大学土木工程学院    
邮编:200092