[1] 能源与环境岩土工程
[2] 宏微观土力学与岩土工程数值分析方法
[3] 软土地下工程与岩土边坡工程
[4] 深海能源土(含可燃冰土体)工程
[5] 太空土(月球土壤等)工程
[6] 深部岩石/土工程
[1] 国家重点研发项目(2022YFC3003404):极端天气黄土体灾变风险防控技术装备研发(课题三:黄土坡体微细观损伤及灾变前兆信息监测技术装备;课题四:区域-流域-斜坡地质灾害多尺度协同智能预警系统),2023/1-2025/12,项目主持;(黄土的宏微观装备测试,黄土模拟)。340万
[2] 海南省重点研发计划项目,ZDYF2021SHFZ264,琼东南盆地天然气水合物组合开采诱发地层灾害的预测与防控2021年12月-2023年12月,项目主持。50万
[3] 中国工程科技发展战略南海研究院重大咨询研究项目课题,21-HN-ZD-02-05,自然与人类活动影响下的琼东南盆地海底地质灾害风险评估与成果研讨评价,2021年11月-2022年11月,主持。20万
[4] 国家重点研发计划项目,2019YFC0312304,深海泥质粉砂天然气水合物矿体安全高效开采机理和关键技术研究—课题四:深海水合物矿体内含破碎、蠕变、相变的储层描述方法与开发模型研究,2020年1月-2021年12月,参加。
[5] 国家自然科学基金重大项目,51890911,深海土与结构的界面弱化理论及工程安全—课题一:深海土内结构演化与多过程耦合模型和计算理论,2019年1月-2023年12月,主持。
[6] 土木工程防灾国家重点实验室自主研究课题基金,SLDRCE19-A-06,深海能源土-井筒相互作用失稳机理与安全控制方法,2019/6-2022/12,主持。
[7] 模拟火星****研制,北京****研究所,2018年5月28日-2019年11月1日,主持;
[8] 国家自然科学基金重点项目,深海水合物开采中能源土灾变机理与控制理论,2017年1月-2021年12月(51639008),主持
[9] 国家自然科学基金,非饱和结构性黄土三维宏微观本构理论研究,2016年1月-2019年12月 (51579178),主持;63万。
[10] 土木工程防灾国家重点实验室自主研究课题基金,湿陷性黄土宏微观本构理论研究,2014年1月-2016年12月 (SLDRCE14-A-04),主持。
[11] 欧共体项目Research and Innovation Staff Exchanges, 2014年-2018年 (H2020-MSCA-RISE-2014),骨干成员、中方首席。
[12] XX-3模拟月壤*****测试,北京****研究所,2013年4月25日-2015年12月31日 ,主持。
[13] 着陆*****土质检测和改良,北京****研究所,2013年3月25日-2014年3月25日 ,主持。
[14] 国家重点基础研究计划(973计划)项目:深部复合地层围岩与TBM的相互作用机理及安全控制, 2014年-2019年 (2014CB046901),课题负责人。
[15] 日本新日制铁公司:组合墙土压力技术研究, 2011年6月-2014年5月(20110603009),主持。
[16] 上海市优秀学术带头人计划:模拟月壤静力触探机理的试验与离散元分析研究, 2011年6月-2013年5月 (11XD1405200),主持。
[17] 973计划项目:大型水利水电工程高陡边坡全生命周期性能演化与安全控制, 2011年11月-2016年8月 (2011CB013504),研究骨干。
[18] 欧共体项目International Research Staff Exchange Scheme:Geohazards and geomechanics, 2012年1月-2015年12月 (294976),骨干成员、中方首席。
[19] 国家自然科学基金,复杂条件下月壤与探测器相互作用的机理研究,2012年1月-2015年12月 (51179128),主持。
[20] 教育部博士点基金:深海能源土的微观本构理论及离散元数值仿真,2011年1月-2013年12月 (20100072110048),主持。
[21] 国家杰出青年科学基金,岩土力学与工程,2011年1月-2014年12月 (51025932),主持。
[22] 模拟月壤********研制 北京****研究所,2010年10月-2011年12月,主持。
[23] 模拟月壤******系统 中国航天科技集团公司第*研究所,2010年3月-12月,主持。
[24] 模样阶段冲击试验***测试 中国航天科技集团公司第*研究所,2010年7月-12月,主持。
[25] 国家自然科学基金,砂土的非共轴微观机制与细宏观数值仿真分析技术,2010年1月-2012年12月,主持。
[26] 模拟月壤******测试,中国航天科技集团公司第*研究所,2009年,主持。
[27] 国家教育委员会留学回国人员基金,天然结构性土的离散元模拟技术,2008年-2010年,主持。
[28] 英国国家工程与自然科学研究基金,无线传感器网络技术在工业加工过程中的应用,2007年,研究骨干。
[29] 国家高技术研究发展计划(863计划),大深度地下穿越工程与微扰动施工研究,2007年-2010年,研究骨干。
[30] 国家自然科学基金,天然结构性土的宏微观本构理论及其静力触探机理研究,2006年-2009年,主持。
[31] 上海市科委,基于微观本构理论的天然结构性土宏细观数值分析技术,2006年-2008年,主持。
[32] 英国国家工程与自然科学研究基金,颗粒材料双剪运动理论及其在静力触探试验中的应用,2003年-2006年,研究骨干。
[33] 加拿大国家自然科学与工程研究基金,特殊土体力学性状的离散元法研究,2000年-2002年,研究骨干。
[34] 日本文部省研究基金,饱和空隙岩土材料的应变局部化分析,1998年-2000年,研究骨干。
[35] 日本关西电力公司工程项目,大阪湾深层粘土的力学性状,1998年,研究骨干。
[36] 中国水利部重点科学基金项目,南水北调工程中黄土渠道浸水变形研究,2000年-2003年,研究骨干。
[37] 中国国家自然科学基金,土体的结构性模型,1996年-1998年,研究骨干。
[38] 南京水利科学研究院重点研究基金,软土大变形固结有限元分析,1996年-1997年,研究骨干。
[39] 中国国家自然科学基金,土体逐渐破坏研究,1993年-1996年,研究骨干。
[40] 南京水利科学研究院重点研究基金,结构性粘土逐渐破坏理论,1993年-1996年,研究骨干。
[41] 中国水利部重点攻关项目,土坝抗裂技术研究,1991年-1992年,研究骨干。
论文(近五年)
[1] Fu R C, Wang H N, Jiang M J(蒋明镜). Exact analytical solution for deep tunnels in viscoelastic–plastic rock considering the actual loading path[J]. Applied Mathematical Modelling, 2024, 128: 370-391.
[2] Jiang M J(蒋明镜), Huang J J, Wang H N. An analytical model and its application in reliability analysis of formation failure during hydrate production in deep-sea areas[J]. KSCE Journal of Civil Engineering, 2024, 28: 74-92.
[3] Jiang M J(蒋明镜), Lu Y X, Wang H N, Chen Y R. Multi-field coupling analysis of mechanical responses in methane hydrate exploitation with a practical numerical approach combining T+H with DEM[J]. Computers and Geotechnics, 2024, 166: 105978.
[4] Huang J J, Jiang M J(蒋明镜), Wang H N. A time-dependent analytical model with hydraulic-mechanical coupling for wellbore stability in hydrate exploitation[J]. Marine Georesources and Geotechnology, 2023, 41(12): 1354-1369.
[5] Li W H, Zhu H T, Jiang M J(蒋明镜), Xu J T, Hu W. The stability of the submarine slope due to hydrate reformation[J]. Marine Georesources and Geotechnology, 2023, 41(12): 1334-1341.
[6] He Y, Zhang G Q, Chen J, Liu S H, Jiang M J(蒋明镜). Influence of C-S-Hs-PCE and Na2SO4 on the fluidity and mechanical performance of cement-lithium slag binder[J]. Materials and Structures, 2023, 56: 158.
[7] He Y, You C Y, Jiang M J(蒋明镜), Liu S H, Shen J A, Hooton R D. Rheological performance and hydration kinetics of lithium slag-cement binder in the function of sodium sulfate[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148: 11653-11668.
[8] Zhang A, Jiang M J(蒋明镜), Wang D, Li Q P. A bounding surface plasticity model for methane hydrate-bearing sediments in deep seabed[J]. Computers and Geotechnics, 2023, 163: 105720.
[9] Zhou Z H, Wang H N, Jiang M J(蒋明镜). Micromechanical mechanism-based anisotropic strength criteria for regularly arranged elliptical particle assembly[J]. Acta Geotechnica, 2023: online.
[10] Jiang M J(蒋明镜), Li G S, Lei H Y, Li Z Y. The compressive behaviours and microscopic characteristics of deep-sea soft soil with deionized or sea water[J]. Marine Georesources and Geotechnology, 2023, online.
[11] Xi B L, Jiang M J(蒋明镜), Mo P Q, Yang J Q, Zhang Z H. Bearing capacity of lunar soil ground under extraterrestrial environmental effects[J]. Computers and Geotechnics, 2023, 165: 105923.
[12] Liu A S, Kwok C, Li W, Jiang M J(蒋明镜). Strain rate effects on intact deep-sea sediments under different confining pressures and overconsolidation ratios[J]. Engineering Geology, 2023, 327: 107357.
[13] Zhang N, Wang H N, Jiang M J(蒋明镜). A mechanistic model for porosity and permeability in deformable hydrate-bearing sediments with various hydrate growth patterns[J]. Acta Geotechnica, 2023: online.
[14] Gu W Y, Xu X, Jiang M J(蒋明镜), Yao W J. Effects of spacing ratio on vortex-induced vibration of twin tandem diamond cylinders in a steady flow[J]. Physics of Fluids, 2023, 35(4): 043604.
[15] Zhang A, Jiang M J(蒋明镜), Wang D. Effect of fabric anisotropy on the cyclic liquefaction of sands: Insight from DEM simulations[J]. Computers and Geotechnics, 2023, 155: 105188.
[16] Jiang M J(蒋明镜), Xi B L, Lei H Y, Guo Z Y. FEM and experimental analysis of lunar soil excavation test[J]. KSCE Journal of Civil Engineering, 2023: 27(8): 3240-3254.
[17] Zhang A, Dafalias Y F, Jiang M J(蒋明镜). A bounding surface plasticity model for cemented sand under monotonic and cyclic loading[J]. Géotechnique, 2023, 73(1): 44-61.
[18] Zeng G S, Wang H N, Jiang M J(蒋明镜). Analytical stress and displacement of twin noncircular tunnels in elastic semi-infinite ground[J]. Computers and Geotechnics, 2023, 160: 105520. (SCI收录,WOS收录号:000444362800017,Web of Science核心合集索引频次44,SCI索引频次42。EI收录号:20232114118647)[19] Zhang A, Jiang M J(蒋明镜), Wang D, Li Q P. Three-dimensional DEM investigation of mechanical behaviors of grain-cementing type methane hydrate-bearing sediment[J]. Acta Geotechnica, 2023, 18: 6371-6394.
[20] Wei F R, Wang H N, Zeng G S, Jiang M J(蒋明镜). Seepage flow around twin circular tunnels in anisotropic ground revealed by an analytical solution[J]. Underground Space, 2023, 10: 1-14.
[21] Wei F R, Wang H N, Zeng G S, Jiang M J(蒋明镜). Analytical solution to the seepage field of two parallel noncircular tunnels in permeable anisotropic ground[J]. KSCE Journal of Civil Engineering, 2022, 26(12): 5328-5341.
[22] Hu T Wang H N, Jiang M J(蒋明镜). Analytical approach for the fast estimation of time-dependent wellbore stability during drilling in methane hydrate-bearing sediment[J]. Journal of Natural Gas Science and Engineering, 2022, 99: 104422.
[23] Zhang N, Wang H N, Jiang M J(蒋明镜). A mesoelastic-plastic damage model for hydrate-bearing sediments with various hydrate-growth patterns[J]. Ocean Engineering, 2022, 266(3): 112919.
[24] Wang H N, Song F, Zhao T, Jiang M J(蒋明镜). Solutions for lined circular tunnels sequentially constructed in rheological rock subjected to non-hydrostatic initial stresses[J]. European Journal of Environmental and Civil Engineering, 2022, 26(5): 1834-1866.
[25] Zeng G S, Wang H N, Jiang M J(蒋明镜). Analytical solutions of noncircular tunnels in viscoelastic semi-infinite ground subjected to surcharge loadings[J]. Applied Mathematical Modelling, 2022, 102: 492-510.
[26] Jiang M J(蒋明镜), Niu M Y, Zhang F G, Wang H N, Liao Z W. Instability analysis of jointed rock slope subject to rainfall using DEM strength reduction technique[J]. European Journal of Environmental and Civil Engineering, 2022, 26(10): 4664-4686.
[27] Guo Y F, Wang H N, Jiang M J(蒋明镜). Efficient iterative analytical model for underground seepage around multiple tunnels in semi-infinite saturated media[J]. Journal of Engineering Mechanics, 2021, 147(11): 04021101.
[28] Zeng G S, Wang H N, Wu L, Jiang M J(蒋明镜). A generalized analytical model for mechanical responses of rock during multiple-tunnel excavation in viscoelastic semi-infinite ground[J]. International Journal of Geomechanics, 2021, 21(11): 04021202.
[29] Yang Y, Zhang C H, Wang R, Jiang M J(蒋明镜), Tian Y H. Engineering properties of the compressibility and crushing characteristics of transitional soils mixed with silicate and carbonate sands[J]. Engineering Geology, 2021, 292(4): 106246.
[30] Gao X, Wang H N, Jiang M J(蒋明镜). Analytical solutions for the displacement and stress of lined circular tunnel subjected to surcharge loadings in semi-infinite ground[J].
[31] Liu J, Wang S, Jiang M J(蒋明镜), Wu W. A state-dependent hypoplastic model for methane hydrate-bearing sands[J]. Acta Geotechnica, 2021, 16(1): 77-91.
[32] Zhang A, Jiang M J(蒋明镜), Du W H. Three-dimensional DEM investigation of the stress-dilatancy relation of grain-cementing type methane hydrate-bearing sediment[J]. Petroleum, 2021, 7(4): 477-484.
[33] Yao Y X, Guo Z H, Zeng J M, Li D L, Lu J S, Liang D Q, Jiang M J(蒋明镜). Discrete element analysis of hydraulic fracturing of methane hydrate-bearing sediments[J]. Energy and Fuels, 2021, 35(8): 6644-6657.
[34] Zhang F G, Jiang M J(蒋明镜). Do the normal compression lines of cemented and uncemented geomaterials run parallel or converge to each other after yielding[J]. European Journal of Environmental and Civil Engineering, 2021, 25(2): 368-386.
[35] Zhou Z H, Wang H N, Jiang M J(蒋明镜). Macro- and micro-mechanical relationship of the anisotropic behaviour of a bonded ellipsoidal particle assembly in the elastic stage[J]. Acta Geotechnica, 2021, 16(12): 3899-3921. [36] Jiang M J(蒋明镜), Sun R H, Arroyo M, Du W H. Salinity effects on the mechanical behaviour of methane hydrate bearing sediments: A DEM investigation[J]. Computers and Geotechnics, 2021, 133: 104067. [150] Lei H Y, Liu M, Feng S X, Liu J J, Jiang M J(蒋明镜). Cyclic behavior of Tianjin soft clay under intermittent combined-frequency cyclic loading[J]. International Journal of Geomechanics, 2020, 20(10): 04020186.
[37] Zeng G S, Wang H N, Jiang M J(蒋明镜), Luo L S. Analytical solution of displacement and stress induced by the sequential excavation of noncircular tunnels in viscoelastic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 134: 104429.
[38] Chen Y M, Zhang L L, Liao C C, Jiang M J(蒋明镜), Peng M. A two-stage probabilistic approach for the risk assessment of submarine landslides induced by gas hydrate exploitation[J]. Applied Ocean Research, 2020, 99(1): 102158.
[39] Wang H N, Gao X, Wu L, Jiang M J(蒋明镜). Analytical study on interaction between existing and new tunnels parallel excavated in semi-infinite viscoelastic ground[J]. Computers and Geotechnics, 2020, 120, 103385.
[40] Che N, Wang H N, Jiang M J(蒋明镜). DEM investigation of rock/bolt mechanical behaviour in pull-out tests[J]. Particuology, 2020, 53: 10-27.
[41] Jiang M J(蒋明镜), Zhang A, Shen Z F. Granular soils: From DEM simulation to constitutive modeling[J]. Acta Geotechnica, 2020, 15(7): 1723-1744.
[42] Lei H Y, Wang L, Jia R, Jiang M J(蒋明镜), Zhang W D, Li C Y. Effects of chemical conditions on the engineering properties and microscopic characteristics of Tianjin dredged fill[J]. Engineering Geology, 2020, 269:105548.
[43] Lei H Y, Xu Y G, Jiang M J (蒋明镜), Jiang Y. Deformation and fabric of soft marine clay at various cyclic load stages[J]. Ocean Engineering, 2020, 195: 106757.
[44] Guo Z Y , Wang H N , Jiang M J(蒋明镜). Elastoplastic analytical investigation of wellbore stability for drilling in methane hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering, 2020, 79: 103344.
[45] Jiang M J(蒋明镜), Liu J, Shen Z F. DEM simulation of grain-coating type methane hydrate bearing sediments along various stress paths[J]. Engineering Geology, 2019, 261: 105280.
[46] Shen Z F, Jiang M J (蒋明镜), Wang S N. Static and kinematic damage characterization in structured sand[J]. Acta Geotechnica, 2019, 14(5): 1403-1421.
[47] Zeng G S, Wang H N, Jiang M J(蒋明镜). Analytical study of ground responses induced by the excavation of quasirectangular tunnels at shallow depths[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(13): 2200-2223.
[48] Jiang M J(蒋明镜), Xi B L, De Blasio F V, Lei H Y, Sun D A. Physical model tests of the bearing behavior of tongji-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2019, 32(2): 04018150.
[49] Wang H N, Chen X P, Jiang M J(蒋明镜), Guo Z Y. Analytical investigation of wellbore stability during drilling in marine methane hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering, 2019, 68, 102885.
[50] Shen Z F, Gao F, Wang Z, Jiang M J(蒋明镜). Evolution of mesoscale bonded particle clusters in cemented granular material[J]. Acta Geotechnica, 2019, 14(6): 1653-1667.
[51] Sheng W G, Zhao T, Dai F, Jiang M J(蒋明镜), Zhou G G D. DEM analyses of rock block shape effect on the response of rockfall impact against a soil buffering layer[J]. Engineering Geology, 2019, 249: 60-70.
[52] Wang H N, Jiang M J(蒋明镜), Zhao T, Zeng G S. Viscoelastic solutions for stresses and displacements around non-circular tunnels sequentially excavated at great depths[J]. Acta Geotechnica, 2019, 14(1): 111-139.
[53] Shen Z F, Jiang M J(蒋明镜), Fang N, Zhou F. A damage evolution law enriched by microscopic mechanisms for structured sand in mechanical loading[J]. Acta Geotechnica, 2019, 14(6): 1905-1924.
[54] 王琪, 王华宁, 蒋明镜. 水-岩化学作用对砂岩力学特性影响的三维离散元分析[J]. 岩石力学与工程学报, 2023, 42(S1): 3344-3354.
[55] 蒋明镜, 刘阿森, 李光帅. 南海北部陆坡区深海软土宏微观特征与力学特性研究[J]. 岩土工程学报, 2023, 45(3): 618-626.
[56] 王思远, 蒋明镜, 李承超, 张旭东. 三轴剪切条件下胶结型深海能源土应变局部化离散元模拟分析[J]. 岩土力学, 2023, 44(11): 3307-3317.
[57] 蒋明镜, 石安宁, 奚邦禄, 黄伟, 吕雷. 火星探测器着陆试验场地研造[J]. 岩土工程学报, 2023, 45(4): 826-832.
[242] 蒋明镜, 张鑫蕊, 司马军, 姜朋明, 李瑞林, 刘一飞. 壤基材料加筋月壤技术在月球基地建设中的应用[J]. 苏州科技大学学报(自然科学版), 2023, 40(3): 11-20+53.
[58] 黄佳佳, 蒋明镜, 王华宁. 基于流固耦合的含水合物地层井壁稳定非稳态解析模型[J]. 同济大学学报(自然科学版), 2023, 51(7): 1033-1043+1053.
[59] 雷华阳, 许英刚, 蒋明镜, 刘旭, 缪姜燕. 动渗耦合作用下软黏土渗透系数演化机制分析[J]. 岩土力学, 2022, 43(10): 2665-2674.
[60] 薄英鋆, 王华宁, 蒋明镜, 车纳. 隧道力学状态离散元模拟中的粒径效应[J]. 地下空间与工程学报, 2022, 18(5): 1471-1480.
[61] 王午阳, 王华宁, 蒋明镜. 基于解析解和新准则的深埋隧道断面形状优化[J]. 力学季刊, 2022, 43(2): 227-238.
[62] 申志福, 孙天佑, 白宇帆, 蒋明镜, 周峰. 基于电镜成像原理的黏土微结构参数提取方法[J]. 岩土工程学报, 2021, 43(5): 933-939.
[63] 付睿聪, 王华宁, 蒋明镜, 杨永恒. 考虑加卸载路径的深埋水工隧道弹塑性解析解[J]. 岩石力学与工程学报, 2021, 40(S2): 3174-3181.
[64] 胡伟, 朱海涛, 蒋明镜, 李文昊. 考虑能源土渗透性影响的水合物分解超孔压特性研究[J]. 岩土力学, 2021, 42(10): 2755-2762+2772.
[65] 李涛, 蒋明镜, 李立青. 非饱和重塑黄土应变控制等应力比试验三维离散元分析[J]. 水利与建筑工程学报, 2021, 19(2): 36-41.
[66] 蒋明镜, 沈振义, 刘俊, 杨涛, 谭亚飞鸥. 含微生物气泡高饱和砂土循环三轴剪切CFD-DEM模拟[J]. 地震工程学报, 2021, 43(2): 353-360.
[67] 申志福, 高峰, 蒋明镜, 王志华, 刘璐, 高洪梅. 黏土片与球状颗粒间范德华作用的简便计算方法[J]. 岩土工程学报, 2021, 43(4): 776-782.
[68] 郭玉峰, 王华宁, 蒋明镜. 水下浅埋双孔平行隧道渗流场的解析研究[J]. 岩土工程学报, 2021, 43(6): 1088-1096.
[69] 蒋明镜, 陈意茹, 卢国文. 一种实用型深海能源土多场耦合离散元数值方法[J]. 岩土工程学报, 2021, 43(8): 1391-1398.
[70] 王华宁, 郭振宇, 高翔, 蒋明镜. 含水合物地层井壁力学状态的弹塑性解析分析[J]. 同济大学学报(自然科学版), 2020, 48(12): 1696-1706.
[71] 蒋明镜, 孙若晗, 李涛, 杨涛, 谭亚飞鸥. 微生物处理砂土不排水循环三轴剪切CFD-DEM模拟[J]. 岩土工程学报, 2020, 42(1): 20-28.
[72] 胡韬, 王华宁, 郭振宇, 蒋明镜. 深海能源土流变和非稳态多场影响的井壁稳定分析[J]. 岩石力学与工程学报, 2020, 39(S1): 3206-3216.
[73] 蒋明镜, 王华宁, 李光帅, 廖优斌, 陈有亮, 卫超群. 深部复合岩体隧道开挖离散元模拟[J]. 岩土工程学报, 2020, 42(S2): 20-25.
[74] 薄英鋆, 王华宁, 蒋明镜. 深部节理岩体开挖卸荷动力破坏机制的离散元研究[J]. 岩土工程学报, 2020, 42(S2): 196-201.
[75] 蒋明镜, 庞红星, 王华宁, 陈有亮, 廖优斌. 复合岩体中深埋隧道开挖破坏机理离散元分析[J]. 地下空间与工程学报, 2020, 16(S2): 702-709.
[76] 蒋明镜, 李光帅, 曹培, 吴晓峰. 用于土体宏微观力学特性测试的微型三轴仪研制[J]. 岩土工程学报, 2020, 42(S1): 6-10.
[77] 蒋明镜, 吕雷, 石安宁, 曹培, 吴晓峰. 适用于显微CT扫描的微型动三轴仪研制与试验验证[J]. 岩土工程学报, 2020, 42(S1): 214-218.
[78] 蒋明镜, 吕雷, 李立青, 黄伟. TJ-M1模拟火壤承载特性的研究[J]. 岩土工程学报, 2020, 42(10): 1783-1789.
[79] 雷华阳, 郝琪, 冯双喜, 张雅杰, 蒋明镜. 不同温度模式下软黏土孔隙水压力变化规律与应力-应变特性研究[J]. 岩石力学与工程学报, 2020, 39(11): 2308-2318.
[80] 李涛, 蒋明镜, 孙若晗. 多种应力路径下结构性土胶结破损演化规律离散元分析[J]. 岩土工程学报, 2020, 42(6): 1159-1166.
[81] 蒋明镜, 卢国文, 李涛. 基于胶结破损机理的非饱和结构性黄土本构模型[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(3): 243-251.
著作
[1] 蒋明镜, 申志福. 深海能源土离散元数值分析[M].上海, 中国: 同济大学出版社, 2024.
[2] Jiang M J(蒋明镜), Fang L, Malcolm B. Geomechanics and geotechnics: from micro to macro[M]. Florida, USA: CRC Press, 2010.
2001:
[3] Oka F, Jiang M J(蒋明镜), Higo Y. Effect of transport of pore water on strain localization analysis of fluid-saturated strain gradient dependent viscoplastic geomaterial[M]// Dyskin A V, Muhlhaus H B, Pasternak E. Bifurcation and Localisation Theory in Geomechanics. Florida, USA: CRC Press, 2001, 77-83.
发明专利
2023:
徐继涛, 朱海涛, 蒋明镜, 李文昊, 张誓杰, 常晓栋, 胡伟. 一种模拟地震作用下水合物分解诱发海底边坡滑塌失稳的试验装置[P]. 中国: ZL202210430725.9, 2023.09.12. (Xu J T, Zhu H T, Jiang M J(蒋明镜), Li W H, Zhang S J, Chang X D, Hu W. An experimental device for simulating the collapse and instability of submarine slope induced by hydrate decomposition under earthquake action[P]. China: ZL202210430725.9, 2023.09.12. (in Chinese))
2022:
李秉宜, 钱彬, 陈永辉, 沈峰, 蒋明镜. 基于深度学习的复合固化土微观结构识别分析方法及系统[P]. 中国: ZL202210630904.7, 2022.07.05. (Li B Y, Qian B, Chen Y H, Shen F, Jiang M J(蒋明镜). Method and system for microstructure identification and analysis of composite solidified soil based on deep learning[P]. China: ZL202210630904.7, 2022.07.05.(in Chinese))
2018:
蒋明镜, 卢厚华, 张学文, 秦粮凯, 金树楼, 李磊. 一种三维半球形颗粒间不同尺寸胶结成型装置[P]. 中国: ZL201820582311.7, 2018.11.16. (Jiang M J(蒋明镜), Lu H H, Zhang X W, Qin L K, Jin S L, Li L. A device for three-dimensional cement formation of different sizes between hemispherical particles[P]. China: ZL201820582311.7, 2018.11.16.(in Chinese))
蒋明镜, 张鹏, 谢扬彪, 秦粮凯, 吴迪, 王剑锋. 一种用于土力学测试的小型一维压缩试验装置[P]. 中国: ZL201820581717.3, 2018.10.23. (Jiang M J(蒋明镜), Zhang P, Xie Y B, Qin L K, Wu D, Wang J F. A device for small one-dimensional compression test soil mechanics testing[P]. China: ZL201820581717.3, 2018.10.23.(in Chinese))
蒋明镜, 张鹏, 谢扬彪, 秦粮凯, 吴迪, 王剑锋. 小型高精度单轴循环荷载压缩试验设备[P]. 中国: ZL201810368354.X, 2018.10.12. (Jiang M J(蒋明镜), Zhang P, Xie Y B, Qin L K, Wu D, Wang J F. A high-precision device for small uniaxial cyclic load compression test[P]. China: ZL201810368354.X, 2018.10.12.(in Chinese))
2017:
刘芳, 孙皓宇, 巨鑫, 蒋明镜. 水合物热开采中锚板基础抗拔性能的模型试验装置及方法[P]. 中国: ZL201710556053.5, 2017.12.15. (Liu F, Sun H Y, Ju X, Jiang M J(蒋明镜). A model test device and method for anti-pulling performance of anchor plate foundation during thermal mining of methane hydrate[P]. China: ZL201710556053.5, 2017.12.15.(in Chinese))
2015:
蒋明镜, 金树楼, 刘蔚, 张宁. 一种半球形理想颗粒接触点处胶结成型装置[P]. 中国: ZL201510033545.7, 2015.06.03. (Jiang M J(蒋明镜), Jin S L, Liu W, Zhang N. A device for cement formation at contact between hemispherical ideal particles[P]. China: ZL201510033545.7, 2015.06.03.(in Chinese))
蒋明镜, 金树楼, 刘蔚, 张宁. 半球形理想胶结颗粒接触抗剪、抗弯、抗扭测试装置[P]. 中国: ZL201510032983.1, 2015.05.13. (Jiang M J(蒋明镜), Jin S L, Liu W, Zhang N. A device for shear, bending and twisting resistance tests of contacts between hemispherical ideal particles[P]. China: ZL201510032983.1, 2015.05.13.(in Chinese))
蒋明镜, 奚邦禄, 彭镝, 戴永生, 刘蔚. 一种室内月球车-月壤相互作用试验设备[P]. 中国: ZL201510032982.7, 2015.05.13. (Jiang M J(蒋明镜), Xi B L, Peng D, Dai Y S, Liu W. A device for indoor interaction test of lunar rover and lunar soil[P]. China: ZL201510032982.7, 2015.05.13.(in Chinese))
2013:
蒋明镜, 王新新, 苏佳兴. 一种室内倾斜静力触探模型试验装置[P]. 中国: ZL201310150614.3, 2013.08.21. (Jiang M J(蒋明镜), Wang X X, Su J X. A model test device for indoor slant cone-penetration test[P]. China: ZL201310150614.3, 2013.08.21.(in Chinese))
2009:
蒋明镜, 孙渝刚. 测试胶结颗粒接触力学特性的防转动夹具[P]. 中国: ZL200820154374.9, 2009.09.02. (Jiang M J(蒋明镜), Sun Y G. An anti-rotation fixture for testing contact mechanical properties of cemented particles[P]. China: ZL200820154374.9, 2009.09.02.(in Chinese))
蒋明镜, 孙渝刚. 复杂应力下胶结颗粒接触力学特性测试装置[P]. 中国: ZL200820154375.3, 2009.08.05. (Jiang M J(蒋明镜), Sun Y G. A device for contact mechanical properties of cemented particles under complex stress[P]. China: ZL200820154375.3, 2009.08.05.(in Chinese))
蒋明镜, 颜海滨, 朱合华. 胶结颗粒接触抗剪、抗扭测试装置[P]. 中国: ZL200710046139.X, 2009.03.25. (Jiang M J(蒋明镜), Yan H B, Zhu H H. A device of shear and torsional testing for contact between cemented particles[P]. China: ZL200710046139.X, 2009.03.25.(in Chinese))
颜海滨, 蒋明镜, 朱合华. 理想颗粒接触点处胶结成型装置[P]. 中国: ZL200710046138.5, 2009.03.25. (Yan H B, Jiang M J(蒋明镜), Zhu H H. A device of the ideal bonding molding at particle contact points[P]. China: ZL200710046138.5, 2009.03.25.(in Chinese))
软件著作权
2018:
同济大学. 基于PFC3D5.0软件考虑胶结宽度接触模型计算软件V1.0[Z]. 中国: 2018SR364973, 原始取得, 全部权利, 2018.03.08. (Tongji University. Calculation software for contact model considering bond width based on PFC3D5.0 software V1.0[Z]. China: 2018SR364973, original acquisition, all rights, 2018.03.08..(in Chinese))
同济大学. 基于PFC3D5.0软件考虑胶结厚度接触模型计算软件V1.0[Z]. 中国: 2018SR398092, 原始取得, 全部权利, 2018.03.08. (Tongji University. Calculation software for contact model considering bond thickness based on PFC3D5.0 software V1.0[Z]. China: 2018SR398092, original acquisition, all rights, 2018.03.08.(in Chinese))
2017:
同济大学. 含动网格CFD-DEM流固耦合计算软件[简称:MCFC]V1.0[Z]. 中国: 2017SR420135, 原始取得, 全部权利, 2017.07.10. (Tongji University. Movable mesh contained CFD-DEM coupling software for fluid-solid interaction analysis [Abbreviation: MCFC] V1.0[Z]. China: 2017SR420135, original acquisition, all rights, 2017.07.10.(in Chinese))
同济大学. 网格内球体切割体积计算软件[简称:BCIW]V1.0[Z]. 中国: 2017SR420139, 原始取得, 全部权利, 2017.06.15. (Tongji University. Calculation software for ball cutting volume in mesh [Abbreviation: BCIW] V1.0[Z]. China: 2017SR420139, original acquisition, all rights, 2017.06.15.(in Chinese))
同济大学. 基于PFC3D5.0软件的胶结型深海能源土温-压-力-化学接触模型计算软件V1.0[Z]. 中国: 2018SR398086, 原始取得, 全部权利, 2017.06.01. (Tongji University. Calculation software for thermal-hydraulic-mechanical-chemical contact model of bond type methane hydrate bearing sediments based on PFC3D5.0 software V1.0[Z]. China: 2018SR398086, original acquisition, all rights, 2017.06.01.(in Chinese))
同济大学. 基于PFC3D5.0软件的三维胶结抗弯扭接触模型能量后处理软件V1.0[Z]. 中国: 2018SR416525, 原始取得, 全部权利, 2017.06.01. (Tongji University. Post-processing software for three-dimensional contact model energy considering rolling and twisting resistance based on PFC3D5.0 software V1.0[Z]. China: 2018SR416525, original acquisition, all rights, 2017.06.01.(in Chinese))
同济大学. 基于PFC3D5.0软件的微观胶结破坏法向应力状态分布比例统计软件V1.0[Z]. 中国: 2018SR420481, 原始取得, 全部权利, 2017.06.01. (Tongji University. Software for normal stress distribution proportion statistics in micro-cement failure based on PFC3D5.0 software V1.0[Z]. China: 2018SR420481, original acquisition, all rights, 2017.06.01.(in Chinese))
同济大学. 基于PFC3D5.0软件的微观胶结破坏模式统计软件V1.0[Z]. 中国: 2018SR512695, 原始取得, 全部权利, 2017.06.01. (Tongji University. Software for micro-cement failure mode statistics based on PFC3D5.0 software V1.0[Z]. China: 2018SR512695, original acquisition, all rights, 2017.06.01.(in Chinese))
同济大学. 基于PFC软件开发的三维CFD-DEM耦合计算软件V1.0[Z]. 中国: 2017SR434595, 原始取得, 全部权利, 2017.01.19. (Tongji University. Three-dimensional CFD-DEM coupling software developed from PFC software V1.0[Z]. China: 2017SR434595, original acquisition, all rights, 2017.01.19.(in Chinese))
2016:
同济大学. 基于PFC3D5.0软件的月壤接触模型计算软件V1.0[Z]. 中国: 2017SR262197, 原始取得, 全部权利, 2016.12.01. (Tongji University. Calculation software for contact model of lunar soil based on PFC3D5.0 software V1.0[Z]. China: 2017SR262197, original acquisition, all rights, 2016.12.01.(in Chinese))
同济大学. 基于PFC2D5.0软件的考虑胶结尺寸的岩石胶结接触模型计算软件V1.0[Z]. 中国: 2017SR436095, 原始取得, 全部权利, 2016.08.15. (Tongji University. Calculation software for contact model of rock bond considering bond size based on PFC2D5.0 software V1.0[Z]. China: 2017SR436095, original acquisition, all rights, 2016.08.15.(in Chinese))
同济大学. 基于PFC3D5.0软件的胶结接触模型计算软件V1.0[Z]. 中国: 2018SR364971, 原始取得, 全部权利, 2016.08.01. (Tongji University. Calculation software for bond contact model based on PFC3D5.0 software V1.0[Z]. China: 2018SR364971, original acquisition, all rights, 2016.08.01.(in Chinese))
同济大学.基于PFC2D5.0软件的胶结接触模型计算软件V1.0[Z]. 中国: 2017SR262184, 原始取得, 全部权利, 2016.08.01. (Tongji University. Calculation software for bond contact model based on PFC2D5.0 software V1.0[Z]. China: 2017SR262184, original acquisition, all rights, 2016.08.01.(in Chinese))
同济大学. 基于PFC3D3.1软件砂土简单三维胶结接触模型计算软件V1.0[Z]. 中国: 2017SR264981, 原始取得, 全部权利, 2016.08.01. (Tongji University. Calculation software for simple three-dimensional contact model of sand based on PFC3D3.1 software V1.0[Z]. China: 2017SR264981, original acquisition, all rights, 2016.08.01.(in Chinese))
同济大学. 基于PFC3D5.0软件的岩石胶结接触模型计算软件V1.0[Z]. 中国: 2017SR264992, 原始取得, 全部权利, 2016.05.01. (Tongji University. Calculation software for contact model of rock bond based on PFC3D5.0 software V1.0[Z]. China: 2017SR264992, original acquisition, all rights, 2016.05.01.(in Chinese))
2015:
同济大学. 基于PFC3D5.0软件黄土胶结接触模型计算软件V1.0[Z]. 中国: 2015SR180850, 原始取得, 全部权利, 2015.08.15. (Tongji University. Calculation software for contact model of loess cement based on PFC3D5.0 software V1.0[Z]. China: 2015SR180850, original acquisition, all rights, 2015.08.15.(in Chinese))
同济大学. 基于PFC3D5.0软件的分层欠压法均匀试样生成软件V1.0[Z]. 中国: 2015SR176286, 原始取得, 全部权利, 2015.08.27. (Tongji University. Homogeneous specimens generation software with multi-layer undercompaction method based on PFC3D5.0 software V1.0[Z]. China: 2015SR176286, original acquisition, all rights, 2015.08.27.(in Chinese))
同济大学. 基于PFC3D5.0软件毛细力接触模型计算软件V1.0[Z]. 中国: 2015SR180594, 原始取得, 全部权利, 2015.06.20. (Tongji University. Calculation software for contact model of capillary water based on PFC3D5.0 software V1.0[Z]. China: 2015SR180594, original acquisition, all rights, 2015.06.20.(in Chinese))
同济大学. 基于PFC3D5.0软件抗转动接触模型计算软件V1.0[Z]. 中国: 2015SR180846, 原始取得, 全部权利, 2015.05.15. (Tongji University. Calculation software for rolling resistance contact model based on PFC3D5.0 software V1.0[Z]. China: 2015SR180846, original acquisition, all rights, 2015.05.15.(in Chinese))
2014:
同济大学. 基于PFC3D软件的完整胶结模型计算软件V1.0[Z]. 中国: 2015SR120246, 原始取得, 全部权利, 2014.10.01. (Tongji University. Calculation software for whole cement model based on PFC3D software V1.0[Z]. China: 2015SR120246, original acquisition, all rights, 2014.10.01.(in Chinese))
同济大学. 基于ABAQUS软件的结构性土本构模型计算软件V1.0[Z]. 中国: 2014SR107535, 原始取得, 全部权利, 2014.03.01. (Tongji University. Calculation software for constitutive model of structural soil based on ABAQUS software V1.0[Z]. China: 2014SR107535, original acquisition, all rights, 2014.03.01.(in Chinese))
2013:
同济大学. 基于PFC平台并行计算控制软件V1.0[Z]. 中国: 2014SR026532, 原始取得, 全部权利, 2013.10.05. (Tongji University. Parallel computing control software based on PFC platform V1.0[Z]. China: 2014SR026532, original acquisition, all rights, 2013.10.05.(in Chinese))
同济大学. 基于PFC软件的无胶结厚度岩石微观力学模型计算软件V1.0[Z]. 中国: 2013SR128383, 原始取得, 全部权利, 2013.07.05. (Tongji University. Calculation software for micromechanical model of rock without cementation thickness based on PFC software V1.0[Z]. China: 2013SR128383, original acquisition, all rights, 2013.07.05.(in Chinese))
同济大学. 基于PFC软件的深海能源土温度-水压-力学胶结模型计算软件V1.0[Z]. 中国: 2013SR127847, 原始取得, 全部权利, 2013.07.25. (Tongji University. Calculation software for thermal-hydraulic-mechanical cement model of methane hydrate bearing sediments based on PFC software V1.0[Z]. China: 2013SR127847, original acquisition, all rights, 2013.07.25.(in Chinese))
同济大学. 基于PFC软件的CFD-DEM耦合分析计算软件V1.0[Z]. 中国: 2013SR127616, 原始取得, 全部权利, 2013.07.25. (Tongji University. CFD-DEM coupled analysis software based on PFC software V1.0[Z]. China: 2013SR127616, original acquisition, all rights, 2013.07.25.(in Chinese))
同济大学. 基于PFC3D软件的非球形颗粒接触模型计算软件V1.0[Z]. 中国: 2013SR122945, 原始取得, 全部权利, 2013.05.15. (Tongji University. Calculation software for contact model of non-spherical particle based on PFC3D software V1.0[Z]. China: 2013SR122945, original acquisition, all rights, 2013.05.15.(in Chinese))
同济大学. 各向异性土体NS2D-1离散元分析软件V1.0[Z]. 中国: 2013SR060949, 原始取得, 全部权利, 2013.04.01. (Tongji University. Analysis software NS2D-1 for anisotropic soil V1.0[Z]. China: 2013SR060949, original acquisition, all rights, 2013.04.01.(in Chinese))
同济大学. 基于PFC软件的考虑胶结厚度的水合物胶结模型计算软件V1.0[Z]. 中国: 2013SR060085, 原始取得, 全部权利, 2013.03.25. (Tongji University. Calculation software for hydrate cement model considering cement thickness based on PFC software V1.0[Z]. China: 2013SR060085, original acquisition, all rights, 2013.03.25.(in Chinese))
2010:
同济大学. 基于PFC软件的简化水泥胶结力学模型计算软件V1.0[Z]. 中国: 2011SR064974, 原始取得, 全部权利, 2010.11.01. (Tongji University. Calculation software for simplified mechanical model of cement bond based on PFC software V1.0[Z]. China: 2011SR064974, original acquisition, all rights, 2010.11.01.(in Chinese))
同济大学. 基于PFC3D软件的毛细水胶结模型计算软件V1.0[Z]. 中国: 2011SR098716, 原始取得, 全部权利, 2010.11.01. (Tongji University. Calculation software for capillary cement model based on PFC3D software V1.0[Z]. China: 2011SR098716, original acquisition, all rights, 2010.11.01.(in Chinese))
同济大学. 基于PFC软件的月壤力学模型分析软件V1.0[Z]. 中国: 2011SR064976, 原始取得, 全部权利, 2010.07.02. (Tongji University. Analysis software for mechanical model of lunar soil based on PFC software V1.0[Z]. China: 2011SR064976, original acquisition, all rights, 2010.07.02.(in Chinese))
2009:
同济大学. 基于PFC软件的抗转动复杂砂土接触模型计算软件V1.0[Z]. 中国: 2011SR073247, 原始取得, 全部权利, 2009.07.01. (Tongji University. Calculation software for rolling resistance contact model of complex sand based on PFC software V1.0[Z]. China: 2011SR073247, original acquisition, all rights, 2009.07.01.(in Chinese))
2008:
同济大学. 基于PFC2D软件的分层欠压法均匀试样生成软件V1.0[Z]. 中国: 2011SR098714, 原始取得, 全部权利, 2008.09.01. (Tongji University. Homogeneous specimens generation software with multi-layer undercompaction method based on PFC2D software V1.0[Z]. China: 2011SR098714, original acquisition, all rights, 2008.09.01.(in Chinese))
同济大学. 基于PFC3D软件的分层欠压法均匀试样生成软件V1.0[Z]. 中国: 2011SR098711, 原始取得, 全部权利, 2008.09.01. (Tongji University. Homogeneous specimens generation software with multi-layer undercompaction method based on PFC3D software V1.0[Z]. China: 2011SR098711, original acquisition, all rights, 2008.09.01.(in Chinese))
2005:
蒋明镜. CFEM2D软土蠕变有限元分析软件V1.0[Z]. 中国: 2012SR006037, 原始取得, 全部权利, 2005.12.20. (Jiang M J(蒋明镜). Finite element analysis software CFEM2D for soft soil creep analysis V1.0[Z]. China: 2012SR006037, original acquisition, all rights, 2005.12.20.(in Chinese))
2004:
蒋明镜. NS2D二维离散元分析软件V1.0[Z]. 中国: 2012SR006036, 原始取得, 全部权利, 2004.12.01.(Jiang M J(蒋明镜). Two-dimensional discrete element analysis software NS2D V1.0[Z]. China: 2012SR006036, original acquisition, all rights, 2004.12.01.(in Chinese))
2013:
Tongji University. PFC2D-oriented thermo-hydro-mechanical contact model for methane hydrate bonded granules[Z]. USA: TX 7-921-004, original acquisition, all rights, 2013.07.25.
2010:
Tongji University. PFC2D-orineted model for lunar soil granules[Z]. USA: TX 7-921-000, original acquisition, all rights, 2010.09.15.
Tongji University. PFC2D-oriented model for granular contacts incorporating rolling resistance[Z]. USA: TX 7-910-490, original acquisition, all rights, 2010.05.01.
Tongji University. PFC2D-oriented method for homogeneous sample generation with DEM[Z]. USA: TX 7-910-491, original acquisition, all rights, 2009.10.01.