相阳

职称:副教授

学位:工学博士学位

[34] 相阳, 王萌, 孙飞飞, 李国强#. 黏弹性连接弯-剪抗侧体系结构抗震性能. 工程力学. https://link.cnki.net/urlid/11.2595.O3.20231226.0919.002.

[33] Wang M, Xiang Y#, Sun FF, Li GQ. Multi-objective seismic optimization and evaluation of core-damper-frame tall buildings considering SSI effect. Soil Dynamics and Earthquake Engineering. 2024 May 1;180:108609.

[32] Yan J, Wu J, Xiang Y, Jiang A, Cao H, Han X#, Li H#. Seismic performance assessment of GFRP-steel double-skin confined rubber concrete composite columns. Journal of Constructional Steel Research. 2024 May 1;216:108597.

[31] Shi-Li Guo, Xiang Y#, Guo-Qiang Li. Floor seismic response spectrum for the building equipped with visco-elastic decouplers. International Journal of Structural Stability and Dynamics. 2023;23(16-18):2340032.

[30] 相阳, 杨熙玲, 李国强#. 黏弹性减震楼盖与传统楼盖钢框架抗震性能对比研究. 建筑结构学报. 2023;44(11):36-45.

[29] Xiang Y, Wang M#, Sun FF, Li GQ#. Aseismic high-rise structure with visco-elastically connected shear- and flexural-subsystems. Engineering Structures. 2023;291: 116409.

[28] Xiang Y, Zhang YJ, Xu F, Li GQ#. Feasibility of a nonlinear spectral approach for peak floor acceleration of multi-story bilinear hysteretic buildings. Bulletin of Earthquake Engineering. 2023;21:349-73.

[27] Li YW, Xiang Y#, Wang M#. Global optimization of locally installed adaptive negative stiffness amplifying damper in steel frames through rocking wall. Journal of Building Engineering. 2022;60:105196.

[26] Li YW, Wang M#, Xiang Y. Structural feasibility of braced-damper system with adaptive negative stiffness devices in yielding multi-storey steel frames. Journal of Constructional Steel Research. 2022;197:107494.

[25] Xiang Y#, Guo J, Kishiki S. Analytical approach for vertical floor acceleration of regular RC frames under earthquake excitation. Engineering Structures. 2022;251:113546.

[24] Wang M, Li YW#, Nagarajaiah S#, Xiang Y. Effectiveness and robustness of braced‐damper systems with adaptive negative stiffness devices in yielding structures. Earthquake Engineering & Structural Dynamics. 2022;51(11):2648-67.

[23] Zhu ZC, Xiang Y#, Peng YY, Luo YF. Earthquake-induced collapse of steel latticed shell: Energy criterion implementation and experimental validation. Engineering Structures. 2021;236:112102.

[22] Yang X, Xiang Y#, Luo YF, Guo XN, Liu J. Axial compression capacity of steel circular tube with large initial curvature: Column curve and application in structural assessment. Journal of Constructional Steel Research. 2021;177:106481.

[21] Xiang Y#, Koetaka Y, Nishira K. Steel frame with aseismic floor: From the viscoelastic decoupler model to the elastic structural response. Earthquake Engineering & Structural Dynamics. 2021;50(6):1651-70.

[20] Xiang Y#, Xie HR. Probabilistic effectiveness of visco-elastic dampers considering earthquake excitation uncertainty and ambient temperature fluctuation. Engineering Structures. 2021;226:111379.

[19] Guo J#, Xiang Y, Fujita K, Takewaki I. Vision-based building seismic displacement measurement by stratification of projective rectification using lines. Sensors. 2020;20(20):5775.

[18] Xiang Y#, Zhang YJ, Guo J, Chen J. Effect of the primary structure on the seismic response of the cable-net façade. Engineering Structures. 2020;220:110989.

[17] Xiang Y#, Koetaka Y. Structural feasibility of incorporating the LVEM-isolated floor in the first story of a two-story steel frame. Engineering Structures. 2019;199:109686.

[16] Xiang Y#, Koetaka Y, Okuda N. Single-story steel structure with LVEM-isolated floor: Elastic seismic performance and design response spectrum. Engineering Structures. 2019;196:109314.

[15] Xiang Y#, Koetaka Y. Ductility demand of bilinear hysteretic systems with large post-yield stiffness: Spectral model and application in the seismic design of dual-systems. Engineering Structures. 2019;187:504-17.

[14] Xiang Y#, Huang QL. Damping modification factor for the vertical seismic response spectrum: A study based on Japanese earthquake records. Engineering Structures. 2019;179:493-511.

[13] Zhu ZC, Luo YF#, Xiang Y. Global stability analysis of spatial structures based on Eigen-stiffness and structural Eigen-curve. Journal of Constructional Steel Research. 2018;141:226-40.

[12] Xiang Y, Luo YF#, Huang QL, Zhu ZC. Probabilistic inelastic seismic demand spectra for large-span planar steel structures subjected to vertical ground motions. Engineering Structures. 2018;174:646-62.

[11] Xiang Y, Luo YF#, Huang QL, Shen ZY. Vertical ductility demand and residual displacement of roof-type steel structures subjected to vertical earthquake ground motions. Soil Dynamics and Earthquake Engineering. 2018;104:259-75.

[10] 朱钊辰, 相阳, 罗永峰#. 空间结构静力稳定分析与评定的特征刚度法. 浙江大学学报 (工学版). 2017;51(11):2112-20.

[9] Xiang Y#, Luo YF, Zhu ZC, Shen ZY. Estimating the response of steel structures subjected to vertical seismic excitation: idealized model and inelastic displacement ratio. Engineering Structures. 2017;148:225-38.

[8] Xiang Y, Luo Y#, Gao X, Shen Z. Analyzing the seismic response of nonlinear cable net structure by the linear response spectrum analysis method. Advances in Structural Engineering. 2018;21(2):185-200.

[7] 郭小农, 王丽, 相阳#, 熊哲, 赵卫华, 严勇. 铝合金板式节点网壳阻尼特性试验研究. 振动与冲击. 2016;35(18):34-9.

[6] 相阳, 罗永峰#, 朱钊辰, 沈祖炎. 基于设计反应谱的空间结构弹塑性地震反应分析方法. 建筑结构学报. 2017;38(9):74-83.

[5] Xiang Y#, Luo YF, Shen ZY. An extended modal pushover procedure for estimating the in-plane seismic responses of latticed arches. Soil Dynamics and Earthquake Engineering. 2017;93:42-60.

[4] Xiang Y, Luo Y, Guo X#, Xiong Z, Shen Z. A linearized approach for the seismic response analysis of flexible cable net structures. Soil Dynamics and Earthquake Engineering. 2016;88:92-108.

[3] 相阳, 罗永峰#, 沈祖炎. 索杆结构非线性地震反应分析的设计反应谱法. 上海交通大学学报. 2016;50(11):1712-8.

[2] 相阳, 罗永峰#, 廖冰, 沈祖炎. 球面网壳地震动输入与振型响应的相关性. 浙江大学学报 (工学版). 2016;50(6):1040-7.

[1] 相阳, 罗永峰#, 郭小农, 沈祖炎. 基于整体刚度参数的空间结构模态推覆分析. 同济大学学报: 自然科学版. 2015;43(12):1771-6.


最后更新时间:--
Copyright © 2020 civileng.tongji.edu.cn 同济大学土木工程学院 All rights reserved.
地址:上海市四平路1239号同济大学土木工程学院    
邮编:200092