余倩倩

职称:教授

学位:博士

    研究方向

    1. 结构性能提升、新型材料和结构体系。具体包括:

    (1)基于机器视觉的钢结构损伤检测

    (2)纤维增强复合材料(FRP)和形状记忆合金(SMA)补强体系

    (3)钢结构疲劳性能提升

    2. 基础设施韧性评估与提升。具体包括:

    (1)基于机器视觉的混凝土损伤检测

    (2)多灾害耦合作用及其作用下结构响应

    研究项目

    1. 国家重点研发计划青年科学家项目“苛刻环境下交通设施关键结构劣化机制与长寿命防护理论”,2024.12-2029.11

    2. 国家自然科学基金优秀青年科学基金项目“钢结构疲劳性能提升”,2023.1-2025.12

    3. 国家自然科学基金面上项目“变幅重复荷载作用下粘贴CFRP补强含损伤钢梁疲劳性能”,2019.1-2022.12

    4. 国家自然科学基金青年项目“海洋大气环境下粘贴CFRP材料补强含损伤钢板的疲劳性能”,2016.1-2018.12

    5. 上海市青年科技启明星计划项目“锈蚀钢构件疲劳性能演化与控制”,2019.4-2022.3

    6. 上海市教育发展基金会晨光计划项目“基于裂纹扩展和粘结失效相互作用的CFRP补强钢梁疲劳性能”,2018.01-2020.12

    7. 同济大学青年优秀人才培养行动计划“海洋大气环境作用下CFRP-钢粘结性能”,2017.01-2019.12

    8. 同济大学大型仪器设备开放测试基金“考虑养护阶段海洋大气环境作用的CFRP/钢粘结性能”,2017.01-2017.12

    9. 上海市土木工程高峰学科学科交叉类合作基金“钢-混凝土组合梁负弯矩区裂缝智能控制与修复”,2017.12-2019.06

    10. 上海市工程结构安全重点实验室开放课题“ECC-砖砌体界面粘结性能研究”,2017.10-2019.09

    11. 上海市土木工程高峰学科交叉项目“多灾害环境下海洋风机全寿命过程性能演化与控制”,2019.4-2020.12

    出版论著

    出版专著:

    1. 余倩倩,粘贴碳纤维增强复合材料改善焊接接头和含缺陷钢板的疲劳性能研究. 上海:同济大学出版社,2017. ISBN: 978-7-5608-7003-8(同济大学110周年“同济博士论丛”出版)

    2. 会议论文集,陈建兵,余倩倩,彭勇波,工程结构性能演化与控制,上海,同济大学出版社,ISBN,978-7-5608-8854-5

    3. 建设部科技发展促进中心. 中国既有建筑改造政策与市场化运作. 北京:中国建筑工业出版社,2011. ISBN: 9787112131433 (第二章第三节和附录)


    发表论文:

    [1] Gu XL, Chen ZY, Yu QQ*, Ghafoori E. Stress recovery behavior of an Fe-Mn-Si shape memory alloy, Engineering Structures, 2021, 243: 112710.

    [2] Yu QQ*, Liu SQ*, Wang JJ, Xu ML, Zhang WX, Cheng LM, Zhu R. Effects of a contusion load on spinal cord with different curvatures Computer Methods in Biomechanics and Biomedical Engineering, 1-8.

    [3] Zhang WP, Chen JP, Yu QQ*, Gu XL. Corrosion evolution of steel bars in RC structures based on Markov chain modeling, Structural safety, 2021, 88: 102037.

    [4] Ren C, Wang HX, Huang YE, Yu QQ*. Post-fire mechanical properties of corroded grade D36 marine steel, Construction and Building Materials, 2020, 263: 120120.

    [5] Chen ZY, Li WT, Yu QQ*. Characterization of damage and healing of cement matrices based on fly ash under repeated loading, Journal of Materials in Civil Engineering, 2021, 33(1): 04020408.

    [6] Li WT, Jiang ZW*, Yu QQ. Multiple damaging and self-healing properties of cement paste incorporating microcapsules, Construction and Building Materials, 2020, 255: 119302.

    [7] Zhu R, Chen YH, Yu QQ, Liu SQ, Wang JJ, Zeng ZL, Cheng LM*. Effects of contusion load on cervical spinal cord: A finite element study, Mathematical Biosciences and Engineering, 2020, 17(3): 2272-2283.

    [8] Xie F, Chen J, Yu QQ*, Dong XL. Behavior of cross arms inserted in concrete-filled circular GFRP tubular columns, Materials, 2019, 12: 2280.

    [9] Yu QQ, Gu XL, Zhao XL, Zhang DM*, Huang HW, Jiang C. Characterization of model uncertainty of adhesively bonded CFRP-to-steel joints, Composite Structures, 2019, 215: 150-165.

    [10] Li WT, Ling CW, Jiang ZW*, Yu QQ. Evaluation of the potential use of form-stable phase change materials to improve the freeze-thaw resistance of concrete, Construction and Building Materials, 2019, 203: 621-632.

    [11] Chen J, Zhang HP, Yu QQ*. Static and fatigue behavior of steel-concrete composite beams with corroded studs, Journal of Constructional Steel Research, 2019, 156: 18-27.

    [12] Hu YJ, Jiang C*, Liu W, Yu QQ, Zhou YL. Degradation of the in-plane shear modulus of structural BFRP laminates due to high temperature, Sensors, 2018, 18: 3361.

    [13] Yu QQ*, Gao RX, Gu XL, Zhao XL, Chen T. Bond behavior of CFRP-steel double-lap joints exposed to marine atmosphere and fatigue loading, Engineering Structures, 2018, 175: 76-85.

    [14] Chen T, Gu XL*, Qi M, Yu QQ. Experimental study on fatigue behavior of cracked rectangular hollow section steel beams repaired with prestressed CFRP plates, Journal of Composites for Construction, 2018, 22(5): 04018034.

    [15] Yu QQ, Wu YF*. Fatigue retrofitting of cracked steel beams with CFRP laminates, Composite Structures, 2018, 192: 232-244.

    [16] Chen T, Hu L, Zhang NX, Yu QQ*. Boundary element analysis of fatigue behavior for CFRP-strengthened steel plates with center inclined cracks, Thin-Walled Structures, 2018, 125: 164-171.

    [17] Zhang DM, Gu XL, Yu QQ*, Huang HW, Wan BL, Jiang C. Fully probabilistic analysis of FRP-to-concrete bonded joints considering model uncertainty, Composite Structures, 2018, 185: 786-806.

    [18] Yu QQ, Wu YF*. Fatigue behaviour of cracked steel beams retrofitted with carbon fibre–reinforced polymer laminates, Advances in Structural Engineering, 2018, 21(8): 1148-1161.

    [19] Yu QQ*, Wu YF. Fatigue durability of cracked steel beams retrofitted with high strength materials, Construction and Building Materials, 2017, 155: 1188-1197.

    [20] Yu QQ, Gu XL*, Li Y, Lin F. Collapse mechanism of reinforced concrete superlarge cooling towers subjected to strong winds, Journal of Performance of Constructed Facilities, 2017, 31(6): 04017101.

    [21] Gu XL*, Yu QQ, Li Y, Lin F. Collapse process analysis of reinforced concrete super-large cooling towers induced by failure of columns, Journal of Performance of Constructed Facilities, 2017, 31(5): 04017037.

    [22] Yu QQ, Wu YF*. Fatigue strengthening of cracked steel beams with different configurations and materials, Journal of Composites for Construction, 2017, 21(2): 04016093.

    [23] Yu QQ, Chen T, Gu XL*, Zhao XL. Boundary element analysis of edge cracked steel plates strengthened by CFRP laminates, Thin-Walled Structures, 2016, 100: 147-157.

    [24] Yu QQ, Gu XL*, Li Y, Lin F. Collapse-resistant performance of super-large cooling towers subjected to seismic actions, Engineering Structures, 2016, 108: 77-89.

    [25] Yu QQ, Zhao XL*, Xiao ZG, Chen T, Gu XL. Evaluation of stress intensity factor for CFRP bonded steel plates, Advances in Structural Engineering, 2016, 17(12): 1729-1746.

    [26] Yu QQ, Chen T*, Gu XL, Zhang NX. Fatigue behaviour of CFRP strengthened out-of-plane gusset welded joints with double cracks, Polymers, 2015, 7(9): 1617-1637.

    [27] Yu QQ, Chen T, Gu XL*, Zhao XL, Xiao ZG. Boundary element analysis of fatigue crack growth for CFRP-strengthened steel plates with longitudinal weld attachments, Journal of Composites for Construction, 2015, 19(2): 04014044.

    [28] Chen T, Qi M, Gu XL*, Yu QQ. Flexural strength of carbon fiber reinforced polymer repaired cracked rectangular hollow section steel beams, International Journal of Polymer Science, 2015, 2015: 204861.

    [29] Yu QQ, Zhao XL*, Chen T, Gu XL, Xiao ZG. Crack propagation prediction of CFRP retrofitted steel plates with different degrees of damage using BEM, Thin-Walled Structures, 2014, 82: 145-158.

    [30] Yu QQ, Zhao XL*, Al-Mahaidi R, Xiao ZG, Chen T, Gu XL. Tests on cracked steel plates with different damage levels strengthened by CFRP laminates, International Journal of Structural Stability and Dynamics, 2014, 14(6): 1450018.

    [31] Yu QQ, Chen T, Gu XL*, Zhao XL, Xiao ZG. Fatigue behaviour of CFRP strengthened steel plates with different degrees of damage. Thin-Walled Structures, 2013, 69: 10-17.

    [32] Chen T, Yu QQ, Gu XL*, Nie GH. Stress intensity factors (KI) of cracked non-load-carrying cruciform welded joints repaired with CFRP materials, Composites Part B: Engineering, 2013, 45(1): 1629-1635.

    [33] Chen T*, Yu QQ, Gu XL, Zhao XL. Study on fatigue behavior of strengthened non-load carrying cruciform welded joints using carbon fibre sheets, International Journal of Structural Stability and Dynamics, 2012, 12(1): 179-194.

    授权专利

    [1] 余倩倩, 常安, 张伟平, 顾祥林. 一种盐雾试验自动旋转疲劳加载装置, ZL202110303387.8

    [2] 余倩倩, 王康, 顾祥林. 一种结构墙体构件平面内外耦合加载试验装置, ZL202110447711.3

    [3] 吴洁颖, 顾祥林, 余倩倩. 一种大型LNG储罐用耗能防晃装置, ZL202111010140.3

    [4] 余倩倩, 赵翊舟, 张伟平顾祥林窦晓静. 一种测量钢管表面锈蚀率的装置及方法, ZL202111195690.7

    [5] 余倩倩, 赵翊舟, 顾祥林张伟平. 一种可实现智能服役的FRP预应力监测和调节装置及方法, ZL202111494780.6

    [6] 顾祥林, 吴洁颖, 余倩倩. 一种内外罐分离式LNG储液罐隔震体系及其施工方法, ZL202110467321.2

    其他成果

  • 暂无内容

最后更新时间:--
Copyright © 2020 civileng.tongji.edu.cn 同济大学土木工程学院 All rights reserved.
地址:上海市四平路1239号同济大学土木工程学院    
邮编:200092