职称:教授
学位:博士
地质力学、岩土工程、地震工程
饱和/非饱和土、软岩/改良土的本构关系
岩土力学数值分析
桩基础、基础・地基・上部建筑物一体化抗震评估
高放核废料的地层处置
海底地质动力学
海底岩层高精度模型的构建和水平断层形成机理的阐明
1. New Frontier in Computational Geotechnics, Proc. 1st International Workshop on New Frontiers in Computational Geotechnics, Banff, Canada, 共著者:A. Yashima, F. Zhang and R. G. Wan, 2003年9月, 岐阜新聞社,ISBN4-87797-056-8 C3051.
2. New Frontier in Computational Geotechnics, Proc. 2nd International Workshop on New Frontiers in Computational Geotechnics, Fortaleza, Brazil, 共著者:F. Zhang, M. M. Farias and A. Yashima, 2005年6月, 岐阜新聞社, ISBN4-87797-107-6C3051.
3. New Frontier in Computational Geotechnics, Proc. 3rd International Workshop on New Frontiers in Computational Geotechnics, Xi’an, China, 共著者:F. Zhang, A. Yashima and H. H. Zhu, 2007年6月, 岐阜新聞社, ISBN 978-4-87797-121-2 C3051.
4. New Frontier in Computational Geotechnics, Proc. 4th International Workshop on New Frontiers in Computational Geotechnics, Pittsburgh, USA, 共著者:F. Zhang, J. S. Lin and A. Yashima, 2009年8月, 岐阜新聞社, ISBN 978-4-87797-149-6 C3051.
5. New Frontier in Computational Geotechnics, Proc. 5th International Workshop on New Frontiers in Computational Geotechnics, Brisbane, Australia, 共著者:H. MD. Shahin, D. M Pedroso, F. Zhang and A. Yashima, 2011年6月, 岐阜新聞社, ISBN978-4-87797-177-9 C3051.
6. New Frontier in Computational Geotechnics, Proc. 6th International Workshop on New Frontiers in Computational Geotechnics, Takayama, Japan, 共著者:H. MD. Shahin, F. Zhang and A. Yashima,2013年8月, 岐阜新聞社, ISBN978-4-87797-190-8 C3051.
7. 计算土力学, 单著, 张锋, 2007年10月, 人民交通出版社(中国), ISBN 978-7-114-06713-6.
1. A.M. Sarr, A. Yashima and F. Zhang, 2002, Strain softening with negativedilatancy for highly structured geomaterials, Proc. 1st International Workshopon New Frontiers in Computational Geotechnics, Yashima et al. (ed.), 43-52.
2. 大川賢紀・亀井宏之・张 锋・木村 亮, 2002, 軟弱地盤における動的相互作用を考慮した斜杭群杭基礎の耐震性評価, 第11回日本地震工学シンポジウム論文集, 343-350.
3. 渦岡良介・芝崎水無子・風間基樹・八嶋厚・张 锋. 2002, 液状化地盤中の杭の地盤反力評価に対する3 次元有効応力解析の適用性, 第11回日本地震工学シンポジウム論文集, 1055-1060.
4. F.Zhang, A. Yashima, T. Sumi, H. Ono, G. L. Ye and A. M. Sarr, 2003, NUMERICALSIMULATION OF PROGRESSIVE FAILURE OF SLOPE, Proc. 1st World Forum of ChineseScholars in Geotechnical Engineering (GEO-WCS2003), Tongji University Press,Zhu et al (eds), 196-207.
5. F.Zhang, A. Yashima, H. Osaki, T. Adachi and F. Oka, 2003, Numerical simulationof progressive failure in cut slope using a soil-water coupled analysis basedon a strain-soften model, Soils and Foundations, Vol. 43, No.5, 119-131. DOI:https://doi.org//10.3208/sandf.43.5_119
6. F.Zhang, A. Yashima, G. L. Ye, T. Adachi and F. Oka, 2003, An elastoplasticstrain-softening constitutive model for soft rock considering the influence ofintermediate stress, Soils and Foundations, Vol. 43, No.5, 107-117, DOI:https://doi.org/10.3208/sandf.43.5_107.
7. F.Zhang, A. Yashima, S. Matsuda, Y. Sekine & H. Hyodo, 2003, Evaluation ofthe remedial works for cracked tunnels in creep-behaved ground, Proc. 12thAsian Regional Conference of Int. Society for Soil Mechanics and GeotechnicalEngineering, Singapore, Leung et al. (eds), 895-898.
8. F.Zhang, A. Yashima & Y. Noda, 2003, Dynamic behavior of group pile withsimplified model and full model, Proc. the Sino-Japanese Symposium onGeotechnical Engineering, Beijing, Yu & Akagi (eds), 80-87.
9. 大川 賢紀・亀井 宏之・木村 亮・张 锋, 2003, 斜杭を有する群杭基礎の動的挙動に関する実験的検討, 土木学会論文集, No.729, III-62, 31-42, DOI:https://doi.org/10.2208/jscej.2003.729_31.
10. 大川 賢紀・亀井 宏之・张 锋・木村 亮, 2004, 一体系動的解析手法による斜杭群杭基礎の動的挙動に関する数値シミュレーション, 土木学会論文集, No.771, III-68, 33-50, DOI:https://doi.org/10.2208/jscej.2004.771_33.
11. G.L., Ye, H., Miyaguchi, Y., Huang, H., Sawada, F. Zhang & A. Yashima, 2004,Dynamic behavior of group-pile foundation evaluated by simplified model andsophisticated model, Proc. 13th WCEE, Vancouver, Paper No. 28, CD-ROM.
12. K.Sawada, A., Yashima, F. Zhang, R., Furuta, T., Yoshida, 2004, Experimental AndNumerical Studies on The Change in Ground Stiffness Before And AfterLiquefaction, Proc. 13th WCEE , Vancouver, Paper No. 601, CD-ROM.
13. F.,Oka, C.W. Lu, R. Uzuoka, F. Zhang, 2004, Numerical Study of Structure-Soil-Group Pile Foundations Using An Effective Stress Based Liquefaction AnalysisMethod, Proc. 13th WCEE , Vancouver, Paper No. 3338, CD-ROM.
14. Y.Huang, F. Zhang, A. Yashima, K. Sawada, G. L. Ye and N. Kubota, 2004,Three-Dimensional Numerical Simulation of Pile-Soil Seismic Interaction inSaturated Deposits with Liquefiable Sand and Soft Clay, Proc. 6th WorldCongress on Computational Mechanics, Yao et al. (ed.), Springer, ISBN7-89494-512-9, CD-ROM, M-274.
15. R.Uzuoka1, M. Kazama, F. Zhang, A. Yashima and F. Oka, 2004, Prediction of EarthPressures on a Pile Group Due to Liquefaction-induced Ground Flow, Proc. 6thWorld Congress on Computational Mechanics, Yao et al. (ed.), Springer, ISBN7-89494-512-9, CD-ROM, M-271.
16. K.Sawada, S. Moriguchi, A. Yashima, F. Zhang and R. Uzuoka, 2004, Largedeformation analysis in geomechanics using CIP method, JSCE, Series B, Vol.47,No.4, 735-743.
17. G.L., Ye, K., Naito, K., Sawada, F. Zhang & A., Yashima, 2004, Experimentalstudy on soft sedimentary rock under plane-strain compression and creep tests,Proc. Int. Symp. of ISRM on 3rd ARMS 2004, Ohnishi et al. (ed.), Millpress,865-870.
18. Y.Huang, K. Sawada, S. Moriguchi, A. Yashima & F. Zhang, 2004, Finite elementanalysis of a reinforced soil dike, Proc. 2nd International Workshop on NewFrontiers in Computational Geotechnics, Fortaleza, Brazil, Zhang et al. (ed.),55-58.
19. H.Aung, F. Zhang, A. Yashima, K. Naito and G. L. Ye, 2004, Strain softening timedependency of soft sedimentary rock and its modeling, Proc. 2nd InternationalWorkshop on New Frontiers in Computational Geotechnics, Fortaleza, Brazil,Zhang et al. (ed.), 135-144.
20. F.Zhang, A. Yashima, T. Nakai, G. L. Ye and H. Aung, 2005, An elasto-viscoplasticmodel for soft sedimentary rock based on tij concept and subloading surface,Soils and Foundations, Vol.45, No.1, 65-73.
21. G.L.Ye, F. Zhang, A. Yashima, T. Sumi and T. Ikemura, 2005, Numerical analyses onprogressive failure of slope due to heavy rain with 2D and 3D FEM, Soils andFoundations, Vol.45, No.2, 1-17, DOI: https://doi.org/10.3208/sandf.45.2_1.
22. 今井政人・岡二三生・中島伸一郎・张 锋, 2005, 薄肉鋼管―ソイルセメント複合構造体の圧縮変形特性とそのモデル化, 土木学会論文集, No.792, III-71, 103-120, DOI:https://doi.org/10.2208/jscej.2005.792_103.
23. A.Yashima, F. Zhang & G. L. Ye, 2005, Progressive failure of slope due totunnel excavation and its numerical simulation, Proc. 16th ICSMGE, Vol.2,2611-2615.
24. 大川 賢紀・亀井 宏之・张 锋・樋口美紀恵・木村 亮, 2005, 斜杭を有する鋼管杭基礎の地震時の支持性能, 土木学会論文集, No.806, III-73, 1-12, DOI:https://doi.org/10.2208/jscej.2005.806_1.
25. Y.Huang, A. Yashima, F. Zhang and R. Uzuoka, 2005, Numerical simulation ofmitigation for liquefaction by ground improvement and structural enhancement,Proc. 2nd China-Japan Geotechnical Symposium, Shanghai, China, Huang et al.(ed.), 91-96.
26. G.L. Ye, F. Zhang, A. Yashima, K. Naito & H. Aung, 2005, An investigationinto the mechanical behavior of sedimentary soft rock in plane-strain test,Proc. 2nd China-Japan Geotechnical Symposium, Shanghai, China, Huang et al.(ed.), 196-203.
27. M.Kimura, S. Tamatani, K. Isobe and F. Zhang, 2005, Numerical prediction oflong-term displacements of group-pile foundation in clayed ground consideringconstruction process, Proc. 2nd China-Japan Geotechnical Symposium, Shanghai,China, Huang et al. (ed.), 525-532.
28. B.Ye, H. Yokawa, T. Kondo, A. Yashima and F. Zhang, 2005, Experimental study ondynamic interaction between group-pile foundation and sandy ground with shakingtable tests, Proc. 2nd China-Japan Geotechnical Symposium, Shanghai, China,Huang et al. (ed.), 579-586.
29. Y.Huang, K. Sawada, S. Moriguchi, A. Yashima and F. Zhang, 2006, Numericalassessment of the effect of reinforcement on the performance of reinforced soildikes, Geotextiles and Geomembranes, No.24, 169–174, DOI:https://doi.org/10.1016/j.geotexmem.2005.11.005.
30. B.Ye, H. Yokawa, T. Kondo, A. Yashima, F. Zhang. and Yamada, H. 2006,Investigation on Stiffness Recovery of Liquefied Sandy Ground afterLiquefaction using Shaking-Table Tests, Soil and Rock Behavior and Modeling,ASCE Geotechnical Special Publication No.150, 482-489, DOI:https://doi.org/10.1061/40862(194)64.
31. F.Zhang, A. Yashima, G. L. Ye, H. Aung, K. Naito and T. Nakai, 2006, Elasto-Viscoplastic Behavior of SoftSedimentary Rock, Tests and Its Modeling, Geomechanics II, Proc. 2nd Japan-U.S.Workshop on Testing, Modeling, and Simulation in Geomechanics, ASCEGeotechnical special publication, 148-161,https://ascelibrary.org/doi/10.1061/40870%28216%2912.
32. Y.Huang, A. Yashima, F. Zhang. and K. Sawada, 2006, Numerical simulation forearthquake liquefaction of soil embankments, Computational Methods, Proc.ICCM2006, Liu et al (eds), Springer, 269-274.
33. M.Kikumoto, T. Nakai, F. Zhang, M. Hinokio, A. Yagyu & H. Kyokawa, 2006,Extension of subloading tij model to structured soils, Proc. IS-Yamaguchi,Geomechanics and Geotechnics of Particulate Media, Hyodo et al (eds), Balkema,305-311.
34. R.Uzuoka, M. Cubrinovski, F. Zhang, A. Yashima and F. Oka, 2006, Validation of3-D dynamic soil-water coupled analyses for liquefaction-induced earth pressureon a pile group, Proc. 3rd International Workshop on New Frontiers inComputational Geotechnics, IWS-Xi’an, Zhang et al. (ed.), 45-50.
35. B.Ye, G.L. Ye, F. Zhang and A. Yashima, 2006, Numerical simulation on repeatedprocesses of liquefaction and consolidation in sandy ground, Proc. 3rdInternational Workshop on New Frontiers in Computational Geotechnics,IWS-Xi’an, Zhang et al. (ed.), 51-56.
36. M.Kikumoto, T. Nakai, F. Zhang, M. Hinokio, A. Yagyu and H. Kyokawa, 2006,Isotropic hardening model for soil considering induced anisotropy usingmodified stress, Proc. 3rd International Workshop on New Frontiers inComputational Geotechnics, IWS-Xi’an, Zhang et al. (ed.), 115-120.
37. Uzuoka,R., Cubrinovski, M., Zhang, F., Yashima, A., Oka, F., 2006, Accuracy ofprediction with effective stress analysis for liquefaction-induced earthpressure on a pile group, Proc. Workshop on Geotechnical EarthquakeEngineering, November, Christchurch, New Zealand, 120-132.
38. K.Sawada, F. Zhang and A. Yashima, 2006, Rotation of Granular material inlaboratory tests and its simulation using tij-Cosserat continuum theory,Computational Methods, Liu et al.(eds), Springer, 1701-1706.
39. R.Uzuoka, B, N. Sento, M. Kazama, F. Zhang, A. Yashima and F. Oka, 2007,Three-dimensional numerical simulation of earthquake damage to group-piles in aliquefied ground, Soil Dynamics and Earthquake Engineering, Vol.27, No.5,395–413, DOI: https://doi.org//10.1016/j.soildyn.2006.10.003.
40. F.Zhang, G. L. Ye, K. Naito, H. Aung and A. Yashima, 2007, Mechanical behavior ofsoft sedimentary rock--Testing and modeling, Proc. International Workshop onConstitutive Modelling-Development, Implementation, Evaluation and Application,Hong Kong, Yin et al (eds), 228-237.
41. B.Ye, G. L. Ye, F. Zhang and A. Yashima, 2007, Experiment and numericalsimulation of repeated liquefaction-consolidation of sand, Soils andFoundations, Vol.47, No.3, 547-558, DOI: https://doi.org//10.3208/sandf.47.547.
42. F.Zhang, B. Ye, T. Noda, M. Nakano and K. Nakai, 2007, Explanation of Cyclicmobility of soils: approach by stress-induced anisotropy, Soils andFoundations, Vol.47, No.4, 635-648, DOI: https://doi.org/10.3208/sandf.47.635.
43. G.L. Ye, F Zhang, K Naito, H. Aung and A Yashima, 2007, Test on soft sedimentaryrock under different loading paths and its interpretation, Soils andFoundations, Vol.47, No.5, 897-909, DOI: https://doi.org/10.3208/sandf.47.897.
44. N.Iwata, T. Nakai , F. Zhang, T. Inoue and H. Takei, 2007, Influences of 3Deffects, wall deflection process and wall deflection mode in retaining wallproblems, Soils and Foundations, Vol.47, No.4, 685-699, DOI:https://doi.org/10.3208/sandf.47.685.
45. H.Aung, K. Naito, M. Iwata, B. Ye, A. Yashima and F. Zhang, 2007, Tests on shearstrength and creep behavior of sedimentary soft rock under triaxial andplane-strain conditions, Proc. 13th Asian Regional Conference on Soil Mechanicsand Geotechnical Engineering, Kolkota, Vol.1, 533-536.
46. T.Nakai, F. Zhang, M. Kikumoto, H.M. Shahin, H. Takei & M. Niinomi, 2007,Influence of existing load on excavation problems – model tests and numericalsimulation, Proc. 10th Int. Symp. on Numerical Models in Geomechanics, Rhodes,Greece, Ponde et al (eds), Balkema, 611-617.
47. M.Kikumoto, H. Kyokawa, T. Nakai, F. Zhang & M, Hinokio, 2007, Description ofinduced anisotropy of soils using isotropic hardening rule in modified stressspace, Proc. 10th Int. Symp. on Numerical Models in Geomechanics, Rhodes,Greece, Ponde et al (eds), Balkema, 85-91.
48. B.Ye, A. Yashima, G. L. Ye and F. Zhang, 2007, Repeated liquefaction andconsolidation of sand, tests and numerical simulation considering finitedeformation, Proc. 10th Int. Symp. on Numerical Models in Geomechanics, Rhodes,Greece, Ponde et al (eds), Balkema, 729-735.
49. 村松大輔・张 锋・H. M. Shahin, 2007, 土のう補強材地盤の有限変形を伴う支持力特性の数値シミュレーション, 地盤工学ジャーナル, Vol. 2, No. 1, 11-23, DOI:https://doi.org/10.3208/jgs.2.11.
50. 磯部公一・木村亮・张 锋・河野謙治・原田典佳・槇野健・桑嶋健, 2007, 既設渡河橋梁基礎を補強した鋼管矢板基礎の補強メカニズムに関する有限要素解析, 土木学会論文集C, Vol.63, No.2, 516-529, DOI:https://doi.org/10.2208/jscejc.63.516.
51. T.Nakai, F. Zhang, M. Hinokio, H.M. Shahin, M. Kikumoto, Yonaha and A. Nishio,2007, Bearing capacity of reinforced foundation subjected to pull-out loading:3D model tests and numerical simulation, Proc. Int. Symp. on New Horizons inEarth Reinforcement, Otani et al (eds), Balkema, 457-463.
52. D.Muramatsu, F. Zhang and H. M. Shahin, 2007, Numerical simulation on bearingcapacity of soilbag-reinforced ground considering finite deformation, Proc.Int. Symp. on New Horizons in Earth Reinforcement, Otani et al (eds), Balkema,465-471.
53. H.Kyokawa1, T. Nakai, F. Zhang and M. Kikumoto, 2007, A method of modeling ofgeomaterials considering density and bonding of soils, Proc. Internationalconference of APCOM’07 in conjunction with EPMESC XI, MS29-1-3, CDROM.
54. B.Ye, D. Muramatsu, F. Zhang and T. Nakai, 2007, Numerical Simulation ofVibration Damping Effect of Soilbag, Proc. International conference of APCOM’07in conjunction with EPMESC XI, MS29-4-1, CDROM.
55. T.Nakai, F. Zhang, H.M. Shahin and M. Kikumoto, 2007, Behavior of ground inexcavation problems -MODEL TESTS AND NUMERICAL SIMULATIONS-, Proc. International Conference on New frontiers inChinese and Japanese Geotechniques, Yao et al (eds), 3-20, China CommunicationsPress.
56. T.Nakai, F. Zhang, H. Kyokawa and M. Kikumoto, 2007, A simple modeling ofstructured soils, Proc. International Conference on New frontiers in Chineseand Japanese Geotechniques, Yao et al (eds), 435-447, China CommunicationsPress.
57. G.L. Ye, B Ye, F. Zhang, M. Fukuda and J Nagaya, 2007, A unified approach forfinite element modeling of static and dynamic behaviors of SCP improved ground,Proc. International Conference on Newfrontiers in Chinese and Japanese Geotechniques, Yao et al (eds), 706-717,China Communications Press.
58. YeG.L., Zhang F., Yashima A., Aung H. and Naito K. 2007, Influence of Membraneand Filter Paper on Plane-Strain Testing of Soft Sedimentary Rock, GeotechnicalTesting Journal, Vol.30, No.6, 442-453, DOI:https://doi.org//10.1520/GTJ100889.
59. C.W. Lu, F. Oka and F. Zhang, 2007, Analysis of soil-pile-structure interactionin a two-layer ground during earthquakes considering liquefaction,International Journal for Numerical and Analytical Methods in Geomechanics,32(8), 863 – 895, DOI: https://doi.org//10.1002/nag.646.
60. R.Uzuoka, M. Cubrinovski, H. Sugita, M. Sato, K. Tokimatsu, N. Sento, M. Kazama,F. Zhang, A. Yashima and F. Oka, 2008, Prediction of pile response to lateralspreading by 3-D soil-water coupled dynamic analysis: Shaking in the directionperpendicular to ground flow, Soil Dynamics and Earthquake Engineering, Vol.28,No.6, 436-452, DOI: https://doi.org//10.1016/j.soildyn.2007.08.007.
61. Y.Huang, A. Yashima, K. Sawada and F. Zhang, 2008, Numerical assessment of theseismic response of an earth embankment on liquefiable soils, Bulletin ofEngineering Geology and the Environment, Vol. 67, 31–39, DOI:https://doi.org//10.1007/s10064-007-0097-y.
62. Y.Huang, F. Zhang, A. Yashima & W.M. Ye, 2008, Numerical simulation ofmitigation for liquefaction-induced soil deformations in a sandy groundimproved by cement grouting, Environmental Geology, Vol.55, 1247–1252, DOI:https://doi.org/10.1007/s00254-007-1069-z.
63. N.Iwata, H. M. Shahin, F. Zhang, T. Nakai, M. Niinomi & Y.D.S. Geraldni,2008, Excavation with stepped-twin retaining wall: model tests and numericalsimulations, Proc. 6th Int. Symp. (IS-Shanghai 2008), C.W.W. Ng et al (eds),Balkema, 655-661.
64. F.Zhang, K. Okawa, M. Kimura, 2008, Centrifuge model test on dynamic behavior ofgroup-pile foundation with inclined piles and its numerical simulation,Frontiers of Structure and Civil Engineering, Springer, Vol.2, No.3, 233–241,DOI: https://doi.org//10.1007/s11709-008-0033-7.
65. H.M. Shahin, T. Nakai, F. Zhang, M. Kikumoto, T. Tabata & R. Nakahara, 2008,Ground movement and earth pressure due to circular tunneling: model tests andnumerical simulations, Proc. 6th Int. Symp. (IS-Shanghai 2008), C.W.W. Ng et al(eds), Balkema, 709-715.
66. 村松大輔,叶 斌,张 锋, 2009, 土のうの振動低減効果に関する数値シミュレーション, 地盤工学ジャーナル, Vol. 4, No. 1, 71-80, DOI:https://doi.org/10.3208/jgs.4.71.
67. S.Zhang and F. Zhang, 2009, A Thermo-Elasto-Viscoplastic Model for SoftSedimentary Rock, Soils and Foundations, Vol.49, No.4, 583-596, DOI:https://doi.org/10.3208/sandf.49.583.
68. T.Nakai, H. Kyokawa, M. Kikumoto, H. M. Shahin and F. Zhang, 2009, One-dimensional and three-dimensional descriptions of elastoplastic behavior instructured clays, Proc. 4th International Workshop on New Frontiers inComputational Geotechnics, IWS-Pittsburgh, Zhang et al. (ed.), 3-12.
69. Y.J. Jin, F. Zhang, B. Ye, 2009, Numerical simulation of sand subjected to cyclicloading in undrained conventional triaxial test, Proc. 4th InternationalWorkshop on New Frontiers in Computational Geotechnics, IWS-Pittsburgh, Zhanget al. (ed.), 19-28.
70. H.M. Shahin, T. Nakai, F. Zhang & M. Kikumoto, E. Nakahara and M. Nagata,2009, Interaction effects between existing foundations and tunneling-Modeltests and numerical simulations, Proc. 4th International Workshop on NewFrontiers in Computational Geotechnics, IWS-Pittsburgh, Zhang et al. (ed.),119-126.
71. F.Zhang & Y.J. Jin, 2009, Modeling of Toyoura sand in general loadingconditions, Proc. 4th International Workshop on New Frontiers in ComputationalGeotechnics, IWS-Pittsburgh, Zhang et al. (ed.), 137-144.
72. Y.Sekine, F. Zhang, Y. Tasaka, H. Kurose and T. Ohmori, 2009, Model tests andnumerical analysis on the evaluation of long-term stability of existing tunnel,Proc. 17th ICSMGE, Vol.2, 1848-1854.
73. T.Nakai, H. Kyokawa, M. Kikumoto, H.M. Shahin & F. Zhang, 2009, Elastoplasticmodeling of geomaterials considering the influence of density and bonding,Proc. Int. Symp. on Prediction and Simulation Methods for Geo-HazardMitigation, Kyoto, Japan, 367-373.
74. T.Nakai, H.M. Shahin, M. Kikumoto, H. Kyokawa & F. Zhang, 2009, Simple andunified method for describing various characteristics of geomaterials-Influence of density, bonding, time effects and others-, Journal of AppliedMechanics JSCE, August, vol.12, 371-382.
75. T.Nakai, H. M. Shahin, F. Zhang, M. Hinokio, M. Kikumoto, S. Yonaha, A. Nishio,2010, Bearing capacity of reinforced foundation subjected to pull-out loadingin 2D and 3D conditions, Geotextiles and Geomembranes, Vol.28, 268–280, DOI:https://doi.org/10.1016/j.geotexmem.2009.09.013.
76. Y.Jin, B. Ye and F. Zhang, 2010, Numerical simulation of sand subjected to cyclicload under undrained conventional triaxial test, Soils and Foundations, Vol.50,No.2, 177-194, DOI: https://doi.org/10.3208/sandf.50.177.
77. F.Zhang, Y. Jin, B. Ye and 2010, A try to give a unified description of Toyourastandard sand, Soils and Foundations, Vol.50, No.5, 679-693, DOI:https://doi.org/10.3208/sandf.50.679.
78. H.M. Shahin, T. Nakai, M. Kikumoto, Y. Uetani and F. Zhang, 2010, Interactioneffect of retaining wall and existing foundations in braced excavation, ASCEGeotechnical Special Publication, Deep and Underground Excavation, Vol. 206,92-99, https://ascelibrary.org/doi/10.1061/41107%28380%2913.
79. Y.Jin, X. Bao, Y. Kondo and F. Zhang, 2010, Soil-water coupling analysis ofreal-scale field test for 9-pile foundation subjected to cyclic horizontalloading, ASCE Geotechnical Special Publication, Deep foundation andGeotechnical in situ test, Vol. 205, 111-118, DOI:https://doi.org/10.1061/41106(379)13.
80. T.Nakai, H. M. Shahin, M. Kikumoto, H. Kyokawa and F. Zhang, 2010, Unified methodfor describing various features of stress-strain behavior of geomaterials,Proc. Geo-Shanghai internationalconference, June, 2010, CD-ROM.
81. M.Kikumoto, T. Nakai, H. M. Shahin, A. Watanabe, K. Ishii and F. Zhang, 2010,Mechanical behaviour of geosynthetic-reinforced soil retaining wall, ASCEGeotechnical Special Publication, Ground Improvement and Geosynthetics, Vol.207, 310-317, DOI: https://doi.org/10.1061/41108(381)41.
82. Z.F. Xia, G. L. Ye, J. H. Wang, B. Ye and F. Zhang, 2010, Fully coupled numericalanalysis of repeated shake-consolidation process of earth embankment onliquefiable foundation, Soil Dynamics and Earthquake Engineering, Vol.30,No.11, 1309-1318, DOI: https://doi.org/10.1016/j.soildyn.2010.06.003.
83. F.Zhang, Y. Jin, X. Bao, Y. Kondo and K. Nakamura, 2010, Soil-water couplingfinite element analysis on seismic enhancement effect of group-pile foundationwith ground improvement, Proc. 9th world congress on Computational Mechanics,Sydney, Khalili et al (eds), CD-ROM.
84. S.Zhang, Y.L. Xiong and F. Zhang, 2010, Numerical simulation of a fictional deepgeological disposal of nuclear waste, Proc. 5st International Workshop on NewFrontiers in Computational Geotechnics, IWS-Brisbane, Pedroso and Shahin.(eds.), 59-67.
85. H.Nakano, F. Zhang and Y. J. Jin, 2010, Model test on creep failure of existingtunnel and its numerical simulation, Proc. 14th Asian Regional Conference ofInt. Society for Soil Mechanics and Geotechnical Engineering, Hong Kong, J. H.Yin (eds.), No.224, CD-ROM.
86. S.Zhang, H. Nakano, Y. L. Xiong, T. Nishimura and F. Zhang, 2010,Temperature-controlled triaxial compression/creep test device for thermodynamic properties of softsedimentary rock and corresponding theoreticalprediction, Journal of Rock Mechanics and Geotechnical Engineering, Vol. 2, No.3, 255-261, DOI: https://doi.org/10.3724/SP.J.1235.2010.00255.
87. F.Zhang, Y. Jin, B. Ye, 2010, Theoretical description of Toyoura sand, 'Recentdevelopments of geotechnical engineering', Proc. 4th Japan-China GeotechnicalSymposium, Komiya and Yao (eds), Okinawa, Japan, 148-155.
88. F.Zhang, X. H. Bao and T. Kariya, 2010, Modeling of Unsaturated Soil Consideringthe Effect of Saturation Directly, Geomechanics and Geotechnics, From Micro toMacro, Jiang et al. (eds), CRC Press, Vol.1, 41-45.
89. Y.Jin, X. H. Bao, Y. Kondo, F. Zhang, 2010, Numerical evaluation of group-pilefoundation subjected to cyclic horizontal load, Frontiers of Structure andCivil Engineering, Springer, Vol.4, No.2, 196–207, DOI:https://doi.org/10.1007/s11709-010-0021-6.
90. F.Zhang and T. Ikariya, 2011, A new model for unsaturated soil using skeletonstress and degree of saturation as state variables, Soils and Foundations,Vol.51, No.1, 67-81, DOI: https://doi.org/10.3208/sandf.51.67.
91. F.Zhang, S. Zhang, Y. L. Xiong, H. Nakano and T. Nishimura, 2011, Thermo-hydraulic -mechanical analysis of deep geological disposal of high levelnuclear waste, Proc. 11th International Conference on Computational &Experimental Engineering and Sciences, Nanjing, China, 18-22 April, CDROM.
92. F.Zhang, B. Ye, G. L. Ye, 2011, Unified description of sand behavior, Frontiersof Structure and Civil Engineering, Springer, Vol.5, No.2, 121–150, DOI:https://doi.org//10.1007/s11709-011-0104-z.
93. B.Ye, D. Muramatsu, G.L. Ye, F. Zhang 2011, Numerical assessment of vibrationdamping effect of soilbags, Geosynthetics International, 18(4), 159-168, DOI:https://doi.org/10.1680/gein.2011.18.4.159.
94. H.M. Shahin, T. Nakai, F. Zhang, M. Kikumoto and E. Nakahara, 2011, Behavior ofground and response of existing foundation due to tunneling, Soils andFoundations, Vol.51, No.3, 395-409, https://doi.org/10.3208/sandf.51.395.
95. T.Nakai, H. Shahin, M. Kikumoto, H. Kyokawa, F. Zhang and M. M. Farias, 2011, Asimple and unified one-dimensional model to describe various characteristics ofsoils, Soils and Foundations, Vol.51, No.6, 1129-1148, DOI:https://doi.org//10.3208/sandf.51.1129.
96. T.Nakai, H. Shahin, M. Kikumoto, H. Kyokawa, F. Zhang and M. M. Farias, 2011, Asimple and unified three-dimensional model to describe various characteristicsof soils, Soils and Foundations, Vol.51, No.6, 1149-1168, DOI:https://doi.org/10.3208/sandf.51.1149.
97. Y.F. Bao, G. L. Ye, B. Ye and F. Zhang. 2012, Seismic evaluation ofsoil-foundation-superstructure system considering geometry and materialnonlinearities of both soils and structures, Soils and Foundations, Vol.52,No.2, 257-278, DOI: https://doi.org/10.1016/j.sandf.2012.02.005.
98. B.Ye, G.L. Ye, F. Zhang. 2012, Numerical modeling of changes in anisotropy duringliquefaction using a generalized constitutive model, Computers and Geotechnics,42, 62-72, DOI: https://doi.org/10.1016/j.compgeo.2011.12.009.
99. F.Zhang, B. Ye, G. L. Ye, 2012, A unified description of Toyoura sand,Constitutive Modeling of Geomaterials, Yang et al (eds), Springer Series inGeomechanics & Geoengineering, 663-674.
100. Y.Morikawa, X. H. Bao, F. Zhang, H. Sakaguchi and A. Taira, 2012, Mechanism ofliquefaction in repeated earthquake vibration, Proc. 5th China-JapanGeotechnical Symposium, 386-394.
101. Y.L. Xiong, X. H. Bao and F. Zhang, 2012, 2D Numerical simulation of model teston slope failure due to rainfall based on a rational constitutive model forunsaturated soil, Proc. 5th China-Japan Geotechnical Symposium, 26-35.
102. Y.L. Xiong, F. Zhang, T. Nishimura and Y. Kurimoto, 2012, THM simulation forreal-scale field test, New-Frontiers in Engineering Geology and theEnvironment, Proc. Int. Symp. on CoastalEngineering, ISCEG-Shanghai, 153-156.
103. 森河由紀弘・包小華・前田健一・今瀬達也・张 锋, 2012, 余震による再液状化を考慮した液状化評価の重要性, 地盤工学ジャーナル, Vol.7, No.2, 389-397, DOI: https://doi.org/10.3208/jgs.7.389.
104. Y.K. Fu, M. Iwata, W. Q. Ding, F. Zhang and A. Yashima, 2012, An elastoplasticmodel for soft sedimentary rock considering inherent anisotropy andconfining-stress dependency, Soils and Foundations, Vol.52, No.4, 575-589, DOI:https://doi.org/10.1016/j.sandf.2012.07.001.
105. X.H. Bao, Y. Morikawa, Y. Kondo, K. Nakamura and F. Zhang, 2012, Shaking tabletest on reinforcement effect of partial ground improvement for group-pilefoundation and its numerical simulation, Soils and Foundations, Vol.52, No.6,1043-1061, DOI: https://doi.org/10.1016/j.sandf.2012.11.020.
106. X.H. Bao, Y. Morikawa, K. Maeda, T. Imase and F. Zhang, 2012, Liquefactionanalysis considering re-liquefaction due to aftershock in the 2011 Great EastJapan Earthquake, Proc. JS-Seoul 2012, International Joint Symposium on UrbanGeotechnics for Sustainable Development, 144-147.
107. S.Zhang, W. Leng, F. Zhang and Y. L. Xiong, 2012, A simple thermo-elastoplasticmodel for geomaterials. International Journal of Plasticity, Vol.34, 93-113,DOI: https://doi.org/10.1016/j.ijplas.2012.01.011.
108. 今瀬達也・前田健一・三宅達夫・澤田 豊・鶴ヶ崎和博・角田絋子・张 锋,2012,地震および越流による地盤損傷を考慮した津波力を受ける混成堤の支持力破壊検討, 土木学会論文集B2(海岸工学), Vol. 68,No.2,I_866-I_870, DOI:https://doi.org/10.2208/kaigan.68.I_866.
109. H.H. Zhu, B. Ye, Y. C. Cai and F. Zhang, 2013, An elasto-viscoplastic model forsoft rock around tunnels considering overconsolidation and structure effects,Computers and Geotechnics, 50, 6-16, DOI:https://doi.org/10.1016/j.compgeo.2012.12.004.
110. Y.L. Xiong, X. H. Bao, S. Zhang and F. Zhang, 2013, Finite element analysis onslope failure due to rain fall based on fully coupled soil-water-air 3-phasefield theory, Proc. 6th InternationalWorkshop on New Frontiers in Computational Geotechnics, IWS-Takayama, Shahin etal. (ed.), 153~160.
111. Y.Morikawa, X. Bao, F. Zhang, A. Taira & H. Sakaguchi, 2013, Why anaftershock with a maximum acceleration of 25 gal could make ground liquefied inthe 2011 Great East Japan Earthquake, Proc. 6th International Workshop on NewFrontiers in Computational Geotechnics, IWS-Takayama, Shahin et al. (ed.),117~122.
112. Y.L. Xiong, X. H. Bao and F. Zhang, 2013, Soil-water-air coupling finite elementanalysis of model test on slope failure in unsaturated soil, GeotechnicalEngineering Journal of the SEAGS&AGSSEA, Vol.44, No.2, 1-8.
113. Y.L. Xiong, F. Zhang, T. Nishimura and Y. Kurimoto, 2013, THM simulations forlaboratory heating test and real-scale field test, Proc. 18th ICSMGE, Paris,Vol.4, 3419-3422.
114. Y.L. Xiong, X. H. Bao and F. Zhang, 2013, 2D numerical simulation of model teston slope failure due to rainfall based on a rational constitutive model forunsaturated soil, Proc. 5th China-Japan Geotechnical Symposium, Yao et al.(ed.), Chengdu, 22-29.
115. Y.Morikawa, X.H. Bao, F. Zhang, H. Sakaguchi and A. Taira, 2013, Mechanism ofliquefaction in repeated earthquake vibration, Proc. 5th China-JapanGeotechnical Symposium, Yao et al. (ed.), Chengdu, 287-293.
116. X.H. Bao a, G. L. Ye, B. Ye, Y. Sago, F. Zhang, 2014, Seismic performance of SSPQretaining wall -Centrifuge model tests and numerical evaluation, Soil Dynamicsand Earthquake Engineering, Vol.61-62, 63-82, DOI:https://doi.org//10.1016/j.soildyn.2014.01.019.
117. Y.L. Xiong, S. Zhang, G. L. Ye, F. Zhang,2014, Modification of thermo- elasto-viscoplastic model for soft rock and itsapplication to THM analysis on heating tests, Soils and Foundations, Vol. 54,No.2, 176–196, DOI: https://doi.org/10.1016/j.sandf.2014.02.009.
118. Y.L. Xiong, X. H. Bao, B. Ye, and F. Zhang, 2014, Soil-water-air coupling finiteelement analysis on slope failure in unsaturated ground, Soils and Foundations,Vol. 54, No.3, 377–395, DOI: https://doi.org/10.1016/j.sandf.2014.04.007.
119. Y.Morikawa, K. Maeda and F. Zhang, 2014, Countermeasure against liquefactionusing crushed tile, Advances in Soil Dynamics and Foundation Engineering, ASCEGeotechnical Special Publication No.240, 208-218, DOI:https://doi.org/10.1061/9780784413425.022.
120. Y.Morikawa, K. Maeda and F. Zhang, 2014, Effectiveness of crashed tile incountermeasure against liquefaction, 3rd International conference ongeotechnique, construction material and environment, Nagoya, 3(1), 211-216.
121. X.H. Bao a, G. L. Ye, B. Ye and F. Zhang, 2014, Seismic Performance ofMulti-Story Building with Pile Foundation in Liquefiable Ground IncludingPost-Earthquake Consolidation Settlement, Advances in Soil Dynamics andFoundation Engineering, ASCE Geotechnical Special Publication No.240, 253-262,DOI: https://doi.org/10.1061/9780784413425.036.
122. Y.L. Xiong, S. Zhang, B. Ye, Y. Q. Li and F. Zhang, 2014, Thermo-Hydraulic-Mechanical Coupling Analysis on Heating Test in Unsaturated Ground,Geoenvironmental Engineering, ASCE Geotechnical Special Publication No.241,212-221, DOI: https://doi.org/10.1061/9780784413432.022.
123. Y.Kurimoto, Y. Yamamoto, H. Sakaguchi and F. Zhang, 2014: Numerical experimentson the influence by shear deformation to the formation of décollement zone,Proc. International Conference of Computational Engineering and Science forSafety and Environmental Problems, COMPSAFE 2014, Sendai, Japan, 150-153.
124. F.Zhang, Y. L. Xiong, S. Zhang, and B, Ye, 2014, Thermo-hydraulic-mechanical-aircoupling finite element method and its application to multi-phase problems,International Journal of Rock Mechanics and Geotechnical Engineering, Vol. 6,77-98, DOI: https://doi.org//10.1016/j.jrmge.2014.01.010.
125. Y.L. Xiong, F. Zhang, X. H. Bao and B. Ye, 2014, A FE analysis on slope failurein unsaturated ground based on soil-water-air fully coupling theory, Proc.International Conference on Unsaturated Soils, UNSAT2014, Khalili et al (eds) ,CRC Press, Sydney, 635-641.
126. F.Zhang, R. Oka, Y. Morikawa, Y. Mitsui, T. Osada, M. Kato and Y. Wabiko, 2014,Shaking Table Test on Superstructure-Foundation-Ground System in LiquefiableSoil and Its Numerical Verification, Geotechnical Engineering Journal of theSEAGS&AGSSEA, Vol.45, No.2, 90-95.
127. Y.Q.Li, L.P. Jing, Y.L. Xiong, L.L. Gu & F. Zhang, 2014, 3D dynamic interactionbetween earth dam and uneven liquefiable sandy ground based on CM model, Proc.International Conference 14IACMAG, Computer Methods and Recent Advances inGeomechanics, Oka et al. (eds), © 2015 Taylor & Francis Group, London, ISBN978-1-138-00148-0, 1409-1414
128. Y.L. Xiong, F. Zhang and Y. Q. Li, 2014, Numerical study on thermo-hydro-mechanical-air coupling phenomena in unsaturated ground, Proc. InternationalConference 14IACMAG, Computer Methods and Recent Advances in Geomechanics, Okaet al. (eds), © 2015 Taylor & Francis Group, London, ISBN978-1-138-00148-0, 1415-1420.
129. X.H. Bao, G.L. Ye, B. Ye and F. Zhang, 2014, Liquefaction and post-liquefactionsettlement of a building with different pile foundations, Proc. InternationalConference 14IACMAG, Computer Methods and Recent Advances in Geomechanics, Okaet al. (eds), © 2015 Taylor & Francis Group, London, ISBN978-1-138-00148-0, 1817-1822.
130. G.L.Ye; B. Ye and F. Zhang, 2014, Strength and Dilatancy of Overconsolidated Claysin Drained True Triaxial Tests, Journal of Geotechnical and GeoenvironmentalEngineering, ASCE, Vol. 140, No. 4, 2014, CID: 06013006, DOI: https://doi.org//10.1061/(ASCE)GT.1943-5606.0001060)
131. Y.L. Xiong, Y. Kurimoto and F. Zhang, 2014, A thermo-elastoplastic constitutivemodel for unsaturated/saturated geomaterials, Proc. 8th Asian Rock MechanicsSymposium, Sapporo, RW1-5, CDROM.
132. YeB., Ye W. M., Zhang F. and Xu L., 2014, A new device for measuring thesupercritical CO2 permeability in porous rock at reservoir conditions, Proc.8th Asian Rock Mechanics Symposium, CCS-3, CDROM.
133. Y.Huang, H. L. Cheng, T. Osada, A. Hosoya, and F. Zhang, 2015, MechanicalBehavior of Clean Sand at Low Confining Pressure: Verification with Element andModel Tests, Journal of Geotechnical and Geoenvironmental Engineering, ASCE,06015005, 1-6, DOI: https://doi.org//10.1061/(ASCE)GT.1943-5606.0001330.
134. G.L. Ye, T. Nishimura and F. Zhang, 2015, Experimental study on shear and creepbehaviour of green tuff at high temperatures, International Journal of Rock Mechanics & Mining Sciences, Vol.79, 19-28, DOI:https://doi.org//10.1016/j.ijrmms.2015.08.005.
135. Y.Kurimoto, Y Saeda and F. Zhang, 2015, Numerical tests on formation mechanism of plate boundary décollement zone due to plate tectonics and earthquake-induced dynamic force, Proc. of the 6th Japan-China Geotechnical Symposium, Japanese Geotechnical Society Special Publication, Vol.1, No.3, 11-16, DOI:https://doi.org//10.3208/jgssp.JPN-09.
136. 森河由紀弘・田中雄也・前田健一・张 锋, 2015, 水圧消散効果に着目した地中連続排水壁による液状化対策, 土木学会論文集 A2(応用力学),Vol.71, No.2 (応用力学論文集 Vol.18), I_437-I_448, DOI:https://doi.org//10.2208/jscejam.71.I_437.
137. L.L. Gu, G. L. Ye, X. H. Bao and F. Zhang, 2015, Mechanical behavior of piled-raft foundation for high-speed railway subjected to train loading, Proc.of International Symposium on Systematic Approaches to EnvironmentalSustainability in Transportation, Fairbanks, AK, USA, August 2-5, 3-2, 1-18.
138. B.Ye, W.M. Ye, F. Zhang and L. Xu, 2015, A New Device for Measuring the Supercritical CO2 Permeability in Porous Rocks Under Reservoir Conditions, Geotechnical Testing Journal, ASTM, V.38, No.3, 1-8, DOI:https://doi.org//10.1520/GTJ20140139 .
139. G.J. Burton, J. A. Pineda, D. Sheng, D. W. Airey, F. Zhang, 2016: Exploringone-dimensional compression of compacted clay under constant degree ofsaturation paths, Géotechnique, 66(5), 435–440, DOI:https://doi.org//10.1680/jgeot.14.P.181
140. F.Zhang, Y. Kurimoto, 2016: How to Model the Contractive Behavior of Soil in aHeating Test, Underground Space, Vol., No.1, 30-43, DOI:https://doi.org//10.1016/j.undsp.2016.05.001
141. F.Ren, F. Zhang, C. Xu and G. Wang, 2016: Seismic evaluation of reinforced-soilsegmental retaining walls, Geotextiles and Geomembranes, Vol. 44, Issue 4,604-614, DOI: https://doi.org//10.1016/j.geotexmem.2016.04.002.
142. L.L. Gu, G. L. Ye, X. H. Bao and F. Zhang, 2016: Mechanical behaviour ofpiled-raft foundations subjected to high-speed train loading, Soils andFoundations, Vol.56, No.6, 1035–1054, DOI:https://doi.org//10.1016/j.sandf.2016.11.008.
143. K.Hamayoon, Y. Morikawa, R. Oka and F. Zhang, 2016: 3D dynamic finite elementanalyses and 1g shaking table tests on seismic performance of existinggroup-pile foundation in partially improved grounds under dry condition, SoilDynamics and Earthquake Engineering, Vol.90, 196-210, DOI:https://doi.org//10.1016/j.soildyn.2016.08. 032.
144. X.H. Bao, B. Ye, G. L. Ye and F. Zhang, 2016: Co-seismic and post-seismic behavior of a wall type breakwater on a natural ground composed of liquefiable layer, Natural Hazard, Vol.83, No.3, 1799–1819, DOI:https://doi.org//10.1007/s11069-016-2401-2.
145. 栗本悠平・山本由弦・阪口秀・小枝幸真・张 锋, 2016, 高圧動的載荷を受けた房総産シルト岩と藤森粘土の巨視的・微視的特性に基づくプレート境界断層の初期形成メカニズムに関する一考察, 地盤工学ジャーナル, Vol.11, No.4, 341-351, DOI: https://doi.org//10.3208/jgs.11.341.
146. 栗本悠平・山本由弦・阪口秀・小枝幸真・张 锋, 2016, 地震などの動的外力とプレート沈み込み運動を受けるデコルマの力学挙動に関する数値実験, 地盤工学ジャーナル, Vol.11, No.4, 353-363, DOI:https://doi.org//10.3208/jgs.11.353.
147. 永坂英明・田中良仁・张 锋, 2016, パルス波分解による周波数領域での非線形時刻歴地震応答解析法の提案, 地盤工学ジャーナル, Vol.11, No.4, 377-390, DOI: https://doi.org//10.3208/jgs.11.377.
148. Y.L. Xiong, G. L. Ye, H. H. Zhu, S Zhang and F. Zhang, 2016: Thermo-elastoplasticconstitutive model for unsaturated soils, Acta Geotechnica, Vol.11, 1287–1302,DOI: https://doi.org//10.1007/s11440-016-0462-8
149. Y.L. Xiong, G. L. Ye, H. H. Zhu, S. Zhang and F. Zhang, 2017: A unified thermo-elasto-viscoplastic model for soft rock, InternationalJournal of Rock Mechanics & Mining Sciences, Vol.93, 1-12, DOI:https://doi.org//10.1016/j.ijrmms.2017.01.006.
150. H.Kheradi, B. Ye, H. Nishi, R. Oka and F Zhang, 2017: Optimum pattern of groundimprovement for enhancing seismic resistance of existing box culvert buried insoft ground, Tunnelling and Underground Space Technology, Vol.69, 187–202, DOI:https://doi.org/10.1016/j.tust.2017.06.022.
151. Kamiya,N., Yamamoto, Y., Wang, Q., Kurimoto, Y., Zhang, F. & Takemura, T. 2017.Major variations in vitrinite reflectance and consolidation characteristicswithin a post-middle Miocene forearc basin, central Japan. Tectonophysics,710–711, 69–80, DOI: https://doi.org/10.1016/j.tust.2017.06.022.
152. Z.Wang, M. R. Shen, L. L. Gu and F. Zhang, 2017, Creep behavior and long-termstrength of Green Schist under different confining pressures, GeotechnicalTesting Journal, Vol.40, No.5, 17-29, DOI: https://doi.org/10.1520/GTJ20170143.
153. L.L. Gu , G. L. Ye, Z. Wang, X. Z. Ling and F. Zhang, 2017, Settlement mechanismof piled-raft foundation due to cyclic train loads and its countermeasure,Earthquake Engineering and Engineering Vibration, Vol.16, No.3, 499-511, DOI:https://doi.org/10.1007/s11803-017-0403-z.
154. F.F. Ren, F Zhang, G Wang, Q. H. Zhao and C. Xu, 2017, Dynamic assessment ofsaturated reinforced-soil retaining wall, Computers and Geotechnics, 93, 68-76,https://doi.org/10.1016/j.compgeo.2017.08.020.
155. Q.Huang., H. W. Huang, B. Ye, D. M. Zhang, L. L. Gu and F. Zhang, 2017: Dynamicresponse and long-term settlement of a metro tunnel in saturated clay due tomoving train load, Soils and Foundations, Vol.57, No.6, 1059–1075, DOI:https://doi.org/10.1016/j.sandf.2017.08.031.
156. Q.Huang, H.W. Huang, B. Ye, D.M. Zhang, F. Zhang, 2017: Evaluation oftrain-induced settlement for metro tunnel in saturated clay based on anelastoplastic constitutive model, Underground Space, Vol.3, 109–124, DOI:https://doi.org/10.1016/j.undsp.2017.10.001.
157. H.Kheradi, K. Nagano, H. Nishi and F. Zhang, 2018: 1g shaking table tests onseismic enhancement of existing box culvert with partial ground improvementmethod and its 2D dynamic simulation, Soils and Foundations, Vol.58, No.3,563–581, DOI: https://doi.org/10.1016/j.sandf.2018.01.002.
158. N.Kamiya, M. Utsunomiya, Y. Yamamoto, J. Fukuoka, F. Zhang and W. Lin, 2018:Formation of excess fluid pressure, sediment fluidization and mass-transportdeposits in the Plio-Pleistocene Boso forearc basin, central Japan, GeologicalSociety, London, Special Publications, 477, DOI:https://doi.org/10.1144/SP477.20.
159. Y.Morikawa, H. Sakaguchi, A. Taira and H. Cho, 2018: Numerical analysis onmechanism of liquefaction not only in main earthquake but also in after shock,International Journal of GEOMATE, Vol.14, No.45, 58-65, DOI:https://doi.org/10.21660/2018.45.7264.
160. F.F. Ren, J. Y. He, F. Zhang, G. Wan, Q. H. Zhao, 2018: Numerical investigationof the influence of non-uniform factors on the monotonic/cyclic behaviour ofcoarse-grained soil, Computers and Geotechnics, Vol.103, 115-137, DOI:https://doi.org/10.1016/j.compgeo.2018.07.002.
161. YeB., Ni X.Q., Huang Y., Zhang F., 2018: Unified modeling of soil behaviorsbefore/after flow liquefaction, Computers and Geotechnics, Vol.102, 125–135,DOI: https://doi.org/10.1016/j.compgeo.2018.06.011.
162. X.Xiong, Z. M. Shi, S. G. Guan, F. Zhang, 2018: Failure mechanism of unsaturatedlandslide dam under seepage loading – Model tests and corresponding numericalsimulations, Soils and Foundations, Vol.58, No.6, 1133-1152, DOI:https://doi.org/10.1016/j.sandf.2018.05.012.
163. Y.L. Xiong, Q. L. Yang, S. Zhang, G. L. Ye, G. B. Liu, R. Y. Zheng and F. Zhang,2019: Thermo-elastoplastic model for soft rock considering effects of structureand density, Rock Mechanics and Rock Engineering, Vol.51, 3771–3784, DOI:https://doi.org/10.1007/s00603-018-1557-3.
164. H.Kheradi, Y, Morikawa, G. L. Ye and F. Zhang, 2019: Liquefaction inducedBuckling Failure of Group-Pile Foundation and Countermeasure by Partial GroundImprovement, ASCE, International Journal of Geomechanics, 19(5): 04019020, DOI:https://doi.org/10.1061/(ASCE)GM.1943-5622.0001379.
165. X.Xiong, Y. L. Xiong, T. Tsunemoto, S. Okino, X. Y. Qiu, Y. Kurimoto and F.Zhang, 2019: Tests on mechanical behavior of unsaturated decomposed granite andits modelling considering finite deformation, Soils and Foundations, Vol.59,No.2, 253-270, DOI: https://doi.org/10.1016/j.sandf.2018.10.006.
166. 土井達也,押田直之,山田聖治,室野剛隆,张 锋, 2019: 小径杭併用土のう基礎の地震時応答特性に関する実験的研究, 構造工学論文集, Vol.65A, 164-177, DOI:https://doi.org/10.11532/structcivil.65A.164.
167. Z.Wang, L. L. Gu, M. R. Shen, F. Zhang, G. K. Zhang, X. Wang, 2019: Shear stressrelaxation behavior of rock discontinuities with different joint roughnesscoefficient and stress histories, Journal of Structural Geology Vol.126,272–285, DOI: https://doi.org/10.1016/j.jsg.2019.06.016.
168. Z.Wang, L. L. Gu, M. R. Shen, F. Zhang, G. K. Zhang and S. X. Deng, 2019:Influence of Shear Rate on the Shear Strength of Discontinuities with DifferentJoint Roughness Coefficients, ASTM, Geotechnical Testing Journal, Vol.43, DOI:https://doi.org/10.1520/GTJ20180291.
169. F.Zhang, Y. L. Xiong, Y. Itani, E. One, 2019: Thermo-elasto-viscoplasticmechanical behavior of manmade rock and its numerical modeling, UndergroundSpace Vol.4, 121–132, DOI: https://doi.org/10.1016/j.undsp.2018.12.003.
170. Y.L. Xiong, G. L. Ye, Y. Xie, B. Ye, S. Zhang and F. Zhang, 2019: A unifiedconstitutive model for unsaturated soil under monotonic and cyclic loading,Acta Geotechnica, Vol.14, No.2, 313–328, DOI:https://doi.org/10.1007/s11440-018-0754-2.
171. Y.Morikawa1 and H. Cho, 2020: Numerical analysis on mechanism of dewatering as amitigation method against liquefaction, International Journal of GEOMATE,Vol.18, No.66, 68-75, DOI: https://doi.org/10.21660/2020.66.9407.
172. N.Kamiya, Y. Yamamoto, F. Zhang and W. R. Lin 2020: Vitrinite reflectance andconsolidation characteristics of the post-middle Miocene forearc basin incentral and eastern Boso Peninsula, central Japan: implications for basinsubsidence, Island Arc, DOI: https://doi.org/10.1111/iar.12344.
173. MaJ. N., Xiong X., Yang J. T., Mikami R., Shi Z. M. and Zhang F., 2020: Elementtests on hydraulic-mechanical behavior of saturated-unsaturated landslide dammaterials, JGS Special Publication, Vol.8, No.9, 360-365, DOI:https://doi.org/10.3208/jgssp.v08.j30.
174. 神谷奈々・张 锋・福岡純一・加藤優・林為人, 2020:泥質岩の圧密過程におけるひずみ軟化, 材料, No. 69, No.3, 250-255, DOI: https://doi.org/10.2472/jsms.69.250
175. N.Kamiya, F. Zhang, J. Fukuoka, Y. Kato, and W. R. Lin, 2020: Strain Softening ofSiltstones in Consolidation Process, Journal of the Society of MaterialsScience, Japan, Vol.69, No. 69, No.3, 250-255, DOI:https://doi.org/10.2472/jsms.69.250.
176. H.Iwai, X. Q. Ni, B. Ye, N. Nishimura and F. Zhang, 2020: A new evaluation indexfor reliquefaction resistance of Toyoura sand, Soil Dynamics and EarthquakeEngineering, Vol.136, DOI: https://doi.org/10.1016/j.soildyn.2020.106206.
177. X.Q. Ni, B. Ye, G. L. Ye & F. Zhang, 2020: Unique determination of cyclicinstability state in flow liquefaction of sand, Marine Georesources &Geotechnology, DOI: https://doi.org/10.1080/1064119X.2020.1791289.
178. X.Q. Ni, B. Ye, & F. Zhang X. Q. Feng. 2020. Influence of specimenpreparation on the liquefaction behaviors of sand and its mesoscopicexplanation. ASCE-Journal of Geotechnical and Geoenvironmental Engineering,Vol.147, Issue2, DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002456.
179. L.L. Gu, Z. Wang, A. Hosoya, F. Zhang, 2020: Dilatancy and liquefaction behaviourof clean sand at wide range of confining stresses, Journal of Central SouthUniversity, Vol. 27, 2394–2407, DOI: https://doi.org/10.1007/s11771-020-4457-0
180. W.X. Zhu, L. L. Gu, S. Mei, K. Nagasaki, N. Chino, F. Zhang, 2021, 1g model testsof piled-raft foundation subjected to high-frequency vertical vibration loads,Soil Dynamics and Earthquake Engineering, Vol.141, DOI:https://doi.org/10.1016/j.soildyn.2020.106486.
181. Q.Huang, Li, D.M. Zhang, H.W. Huang, and F. Zhang, 2021, Field Measurement andNumerical Simulation of Train-Induced Vibration from a Metro Tunnel in SoftDeposits, Advances in Civil Engineering, Volume 2021, Article ID 6688746, DOI:https://doi.org/10.1155/2021/6688746.
182. 安井俊平,岩井 裕正,木村 真郷,张 锋, 2021 : 難透水層を有する海底斜面における地すべり運動に関する研究,土木学会論文集A2(応用力学), Vol.76, No.2, I_313-I_323, DOI:https://doi.org/10.2208/jscejam.76.2_I_313.
183. X.Xiong, Y. L. Xiong, and F. Zhang, 2021, Modelling the hydraulic/mechanicalbehaviour of an unsaturated completely decomposed granite under variousconditions, Geomechanics and Engineering, Vol.25, No.2, 75-87, DOI:https://doi.org/10.12989/gae.2021.25.2.075.
184. Y.Lu, W.X. Zhu, G.L. Ye, F. Zhang, 2021, A unified constitutive model forcemented/non-cemented soils under monotonic and cyclic loading, ActaGeotechnica, DOI: https://doi.org/10.1007/s11440-021-01348-w.
185. P.Peng., H. Iwai., I. Ohara., T. Iwata. and F. Zhang, 2021, Influence of acidicenvironment and temperature on mechanical behavior of cement-treated Masado andnumerical modeling with a thermoelasto-viscoplastic model, Soils andFoundations, Vol. 61, No.6, 1481-1499, DOI:https://doi.org/10.1016/j.sandf.2021.08.009.
186. X.Q. Ni, B. Ye, Z. Zhang, S. Zhang and F. Zhang, 2021, An investigation of theinfluence of reconsolidation properties on the reliquefaction resistance ofsand by element tests, ASCE-Journal of Geotechnical and GeoenvironmentalEngineering, DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002755.
187. X.Xiong, Y. L. Xiong, S. Okino, R. Mikami, J. Ma and F. Zhang, 2021, ElementTests on the Hydraulic/mechanical Behaviour of Unsaturated Decomposed GraniteSoil under Various Conditions, Bulletin of Engineering Geology and theEnvironment, DOI: https://doi.org/10.1007/s10064-021-02495-w.
188. X.L. Xie, B. Ye, T. Zhao, X. Q. Feng and F. Zhang, 2021, Changes in sandmesostructure under repeated seismic liquefaction events during centrifugetests, Soil Dynamics and Earthquake Engineering, Vol.150, November 2021,106940, DOI: https://doi.org/10.1016/j.soildyn.2021.106940.
189. P.Peng, H. Iwai, E. Ohne, Y. Itani and F. Zhang, 2022, Model tests andcorresponding numerical simulations on cave model subjected tothermo-mechanical loading, Underground Space, Vol.7, 162–183, DOI:https://doi.org/10.1016/j.undsp.2021.07.003.
190. H.Iwai, T Kawasaki and F Zhang, 2022, A constitutive model for gashydrate-bearing soils considering different types of hydrate morphology andprediction of strength-band, Soils and Foundations, Vol.62, 101103, DOI:https://doi.org/10.1016/j.sandf.2021.101103.
191. W.X. Zhu, G. L. Ye, L. L. Gu, F. Zhang, 2022, Modeling of monotonic and cyclicbehaviors of sand under small and normal confining stresses, Soil Dynamics andEarthquake Engineering, Vol.156, 107209, DOI:https://doi.org/10.1016/j.soildyn.2022.107209.
192. W.X. Zhu, G. L. Ye, L. L. Gu, F. Zhang, 2022, 1g model test of piled-raftfoundation subjected to vibration load and its simulation considering smallconfining stress, Soil Dynamics and Earthquake Engineering, Vol.156, 107212,DOI: https://doi.org/10.1016/j.soildyn.2022.107212.
193. T.Doi, Y. Murono., H. Iwai and F. Zhang, 2022: Numerical investigation of dynamicbehavior of composite foundation composed of soilbags and piles by 3Delastoplastic FEM, Soils and Foundations, Vol.62, No.3, 101158, DOI:https://doi.org/10.1016/j.sandf.2022.101158.
194. X.L. Xie, B. Ye, T. Zhao, X. Q. Feng and F. Zhang, 2022: Effects of priornon-liquefying undrained cyclic loading on sand liquefaction resistance viadiscrete element analysis, Soil Dynamics and Earthquake Engineering, Vol.161,107390, DOI: https://doi.org/10.1016/j.soildyn.2022.107390.
195. Y.D. Xue, Y. P. Cao, M. L. Zhou, F. Zhang, K. Shen and F. Jia, 2022: Rock massfracture maps prediction based on spatiotemporal image sequence modeling,Computer-aided Civil and Infrastructure Engineering, 1–19, DOI:https://doi.org/10.1111/mice.12841.
196. X.Xiong, T. Matsumoto, Z. M. Shi and F. Zhang, 2022: Flume tests andcorresponding numerical simulation of hydraulic/mechanical behavior ofTangjiashan landslide dam subjected to seepage loading, Soils and Foundations,Vol.62, No.5, 101200, DOI: https://doi.org/10.1016/j.sandf.2022.101200.
197. L.L. Gu, W. Zheng, W. X. Zhu, Z. Wang, X. Z. Ling and F. Zhang, 2022:Liquefaction-induced damage evaluation of earth embankment and correspondingcountermeasure, Frontiers of Structural and Civil Engineering, DOI:https://doi.org/10.1007/s11709-022-0848-7.
198. X.Q. Ni, J. N. Ma, H. Sakaguchi and F. Zhang, 2022: Fabric characteristics of insitu sand with/without liquefaction verified by anisotropy of magneticsusceptibility, Journal of Rock Mechanics and Geotechnical Engineering, Vol.14,10 October, DOI: https://doi.org/10.1016/j.jrmge.2022.09.003.
199. W.B. Xie, G. L. Ye, Q. Zhang, J. J. Chen, and F. Zhang,2022: A New True TriaxialApparatus for Finite Deformation with a Novel Rigid–Flexible Loading Device,Geotechnical Testing Journal, DOI: https://doi.org/10.1520/GTJ20210264.
200. X.Q. Ni, J. N. Ma, F. Zhang, 2023, Mechanism of the variation in axial strain ofsand subjected to undrained cyclic triaxial loading explained by DEM withnon-spherical particles, Computers and Geotechnics, Vol. 165, 105846,https://doi.org/10.1016/j.compgeo.2023.105846.
201. J.N. M, X. Xiong, F. Zhang, 2023, Influence of different axis-translationtechniques using ceramic disks/microporous membrane filters onmechanical/hydraulic behavior of unsaturated soil, Soils and Foundations,Vol.63, 101382, DOI: https://doi.org/10.1016/j.sandf.2023.101382.
202. X.L. Xie, B. Ye, L. W. Chen and F. Zhang, 2023, Effects of coupled seepage andseismic histories on liquefaction resistance of shallow sand deposits, SoilDynamics and Earthquake Engineering, Vol.176, 108319, DOI:https://doi.org/10.1016/j.soildyn.2023.108319.
203. W.X. Zhu, G. L. Ye, C. Nobuaki, F. Zhang, 2023, Model tests on static/seismicbehavior of three-hinged multi-arch culvert constructed using differentembankment processes, Tunnelling and underground space technology, Vol.138,105137, DOI: https://doi.org/10.1016/j.tust.2023.105137.
204. L.Y. Cui, W. M. Ye, Y. H. Ji, L. Xu, G. L. Ye, B. Ye, B. Chen, Y. J. Cui, F.Zhang, 2023, A new apparatus for investigating gas transport property ingeomaterials with ultralow permeability, Construction and Building Materials,Vol.385, 131523, DOI: https://doi.org/10.1016/j.conbuildmat.2023.131523.
205. X.Q. Ni, Y. P. Cao, F. Zhang, Z. Zhang, 2023, Evaluation of structural formationof granular materials using anisotropy of magnetic susceptibility, MarineGeoresources & Geotechnology, Vol.41, 2181117, DOI:https://doi.org/10.1080/1064119X.2023.2181117.
206. 张锋, 熊勇林, 2023, 基于热-水-力数值模拟的饱和正常固结黏土热压缩现象, 同济大学学报:自然科学版, Vol.51, 22317, DOI:https://doi.org/10.11908/j.issn.0253-374x.22317.
207. 马俊男, 熊曦, 张锋, 2023, 陶瓷板和多孔渗透膜对非饱和土三轴试验的影响及其数值模拟, 同济大学学报:自然科学版,Vol.51, 22190, DOI: https://doi.org/10.11908/j.issn.0253-374x.22190.