张丰收

职称:教授

学位:博士学位

    研究方向

    深地工程岩石力学;裂隙岩体水力压裂;二氧化碳地质封存与能源存储;极端环境岩土力学;隧道及地下工程

    研究项目

    科研项目:

    [1]    腾讯首届碳寻计划,东部近海玄武岩碳封存,主持,2024

    [2]    国家重点研发计划政府间国际科技创新合作项目,页岩储层安全碳封存基础理论与关键技术,主持,2023

    [3]    国家自然科学基金重点国合项目,深层高温高压页岩水力压裂特性与诱发地震机理研究,主持,2023

    [4]    同济大学学科交叉联合攻关项目,月球岩土材料的摩擦特性及其孕灾机理研究,主持,2022

    [5]    国家重点研发计划子课题,原位尺度气液驱动缝网扩展多场耦合模型和可压裂性评价技术,主持,2021

    [6]    上海高峰高原学科,基于人工智能和多尺度信息融合的非常规储层“甜点”预测及水力压裂优化,主持,2021

    [7]    国家自然科学基金面上项目,流体注入引起的深部页岩断层激活与滑移变形机理研究,主持,2020


    企业委托项目:

    [1]    中国石油天然气股份有限公司长庆油田分公司油气工艺研究院,企业委托项目,吴起长8等扩边区水平井改造工艺综合评价及关键参数优化项目,主持,2024

    [2]    中煤科工开采研究院有限公司,企业委托项目,曹家滩煤矿顶板砂岩水力压裂实验与区域压裂卸压仿真服务,主持,2023

    [3]    中国石油天然气股份有限公司西南油气田分公司要页岩气研究院,企业委托项目,深层页岩气区页岩储层摩擦特性及解释方法研究技术开发,主持,2023

    [4]    中国石油天然气股份有限公司西南油气田分公司要页岩气研究院,企业委托项目,页岩气立体开发压裂优化研究,主持,2022

    [5]    中国石油集团工程技术研究院有限公司,企业委托项目,固液耦合数值模拟算法测试,主持,2022

    [6]    中国石油天然气股份有限公司勘探开发研究院,企业委托项目,基于有限元算法裂缝扩展模块开发,主持,2022

    [7]    中海油能源发展股份有限公司工程技术分公司,企业委托项目,工技公司目标油藏化学、物理扩容增效技术性能测试服务,主持,2022

    [8]    中国石油天然气股份有限公司勘探开发研究院,企业委托项目,高温高压条件下的岩石力学性能与断裂演化机理,主持,2022

    [9]    中国石油天然气股份有限公司勘探开发研究院,企业委托项目,油气水三相渗流-热场-力学耦合三维有限元地应力演化模型开发,主持,2022

    [10] 中国石油天然气股份有限公司勘探开发研究院,非常规储层岩石力学性能演化机理及剪切裂缝导流能力研究,主持,2022

    [11] 中国石油天然气股份有限公司勘探开发研究院,高温高压条件下的岩石力学性能与断裂演化机理研究,主持,2022

    [12] 中国石油天然气股份有限公司西南油气田分公司,企业委托项目,川南深层页岩储层天然裂缝剪切渗流及其稳定性分析,主持,2021

    [13] 中国地质科学院地质力学研究所,企业委托项目,青海共和盆地干热岩诱发地震剪切渗流测试,主持,2021

    [14] 上海市地矿工程勘察院,企业委托项目,上海典型土层温度-应力本构关系及温度-渗流-应力耦合数值模拟,主持,2021

    [15] 中国石油天然气股份有限公司长庆油田分公司,企业委托项目,扇形井网水平井体积压裂优化设计研究,主持,2021

    [16]    中国石油天然气股份有限公司西南油气田分公司,企业委托项目,页岩气井四维地应力演化机理及分布特征研究,主持,2021

    [17]    中海油能源发展股份有限公司工程技术分公司,企业委托项目,西江油田井扩容方案设计和实时监测分析,主持,2021



    出版论著

    《PFC2D/3D颗粒离散元数值计算方法及科学应用》 中国建筑工业出版社

    《离散元水力压裂一体化数值仿真》 科学出版社

    《复杂裂缝导流能力预测理论》 科学出版社

    Coupled thermo-hydro-mechanical processes in fractured rock masses》 Springer


    授权专利

    [1] 赵峦啸;竺炫莹;付晓伟;陈怀震;张丰收;耿建华. 联合监督和非监督学习的低勘探区地层和岩性地震评价方法[P]. 上海市:CN114137610 B,2023-05-02.

    [2] Zhang, F., Feng, R., Yin, Z., Cao, S., Zhao, L. Method for pre-warning deformation of casing pipe according to change feature of b - value of hydraulic fracturing induced micro-seismicity[P]. US2022/0243584A1,2022-08-04.

    [3] 赵峦啸,邹采枫,陈远远,王一戎,陈怀震,张丰收,耿建华. 基于XGBOOST算法与特征工程的岩性及流体类型识别方法[P]. 上海市:CN111753871B,2022-12-16.

    [4] 赵峦啸,许明辉,陈远远,汤继周,张丰收,耿建华. 一种基于Cascade样本均衡的地震流体预测方法[P]. 上海市:CN112434878B,2022-09-20.

    [5] 张丰收,冯睿,尹子睿,王小华,黄刘科,赵峦啸. 利用水力压裂微地震b值来优化页岩气井重复压裂方法[P]. 上海市:CN112883574B,2022-08-09.

    [6] 张丰收,曹澍天,王小华,安孟可,赵峦啸. 一种基于位错理论计算水力压裂产生应力场的方法[P]. 上海市:CN112417784B,2022-07-05.

    [7] 张丰收,冯睿,尹子睿,曹澍天,赵峦啸. 一种利用水力压裂微地震b值变化特征来预警套管变形的方法[P]. 上海市:CN112925015B,2022-03-01.

    [8] 赵峦啸,邹采枫,陈远远,陈怀震,张丰收,耿建华. 一种机器学习框架下考虑空间约束的地震储层预测方法[P]. 上海市:CN111596354B,2021-06-04.

    [9] 朱海燕,沈佳栋,高庆庆,张丰收. 一种支撑剂嵌入和裂缝导流能力定量预测的数值模拟方法[P]. 四川省:CN107423466B,2019-12-24.

    [10] 黄宏伟,谢雄耀,杜军,张丰收,田海洋. 基于探地雷达的盾构隧道沉降控制方法[P]. 上海市:CN100445516C,2008-12-24.


    其他成果

    近年期刊论文:

    [1] Jiang, X., Zhang, F., Huang, B*., Titi, H., Polaczyk, P., Ma, Y., Wang, Y., Cheng, Z. (2024). “Full-scale accelerated testing of geogrid-reinforced inverted pavements”, Geotextiles and Geomembranes, 1-15. https://doi.org/10.1016/j.geotexmem.2024.01.005

    [2] Zhou, Z., Zhang, F*., Fu, H., Xiu, N., Guan, B., Cai, B. (2024). “A thermal–mechanical coupled DEM model for deep shale reservoir: the effects of temperature and anisotropy”, Rock Mechanics and Rock Engineering, 1-20. https://doi.org/10.1007/s00603-023-03756-8

    [3] Zhong, Z., Xu, C., Hu, Y., Zhang, F., Wu, F., Li, B*. (2024). “Frictional strength and sliding behaviors of an analogue rock-fault structure: A laboratory study”, International Journal of Rock Mechanics and Mining Sciences, 174, 105665. https://doi.org/10.1016/j.ijrmms.2024.105665

    [4] Liu, C., Detournay, E*., Zhang, F. (2024). “Finite domain solution of a KGD hydraulic fracture in the viscosity-dominated regime”, Rock Mechanics Bulletin, 3 (1), 100095. https://doi.org/10.1016/j.rockmb.2023.100095

    [5] Hou, L., Elsworth, D., Wang, J., Zhou, J., Zhang, F*. (2024). “Feasibility and prospects of symbiotic storage of CO2 and H2 in shale reservoirs”, Renewable and Sustainable Energy Reviews, 189, 113878. https://doi.org/10.1016/j.rser.2023.113878

    [6] Li, M., Zhang, F*., Wang, S., Dontsov, E., Li, P. (2024). “DEM Modeling of Simultaneous Propagation of Multiple Hydraulic Fractures Across Different Regimes, from Toughness- to Viscosity-Dominated”, Rock Mechanics and Rock Engineering, 57(1), 481-503. https://doi.org/10.1007/s00603-023-03554-2

    [7] Wang, Y., Zhang, F*., Liu, F., Wang, X. (2024). “Full-scale in situ experimental study on the bearing capacity of energy piles under varying temperature and multiple mechanical load levels”, Acta Geotech, 19(1), 401-415. https://doi.org/10.1007/s11440-023-01904-6

    [8] Zhong, Z., Meng, X., Hu, Y., Zhang, F., Wu, F., Wang, G*. (2023). “Quantitative assessments on fluid flow through fractures embedded in permeable host rocks: Experiments and simulations”, Engineering Geology, 327, 107341. https://doi.org/10.1016/j.enggeo.2023.107341

    [9] Zhong, Z., Meng, X., Hu, Y., Zhang, F., Wu, F., Wang, G*. (2023). “Quantitative assessments on fluid flow through fractures embedded in permeable host rocks: Experiments and simulations”, Engineering Geology, 327, 107341. https://doi.org/10.1016/j.enggeo.2023.107341

    [10] Zhong, Z., Xu, C., Zhang, F., Wang, X., Hu, Y*. (2023). “Size effect on hydraulic properties of rough-walled fractures upscaled from meter-scale granite fractures”, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 9(1), 75. https://doi.org/10.1007/s40948-023-00606-3

    [11] Feng, R., Luo, H., Chen, Z., Zhang, F*. (2023). “Integrated microseismic and geomechanical analysis of hydraulic fracturing induced fault reactivation: a case study in Sichuan Basin, Southwest China”, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 9(1), 48. https://doi.org/10.1007/s40948-023-00586-4

    [12] Cui, L., Zhang, F., An, M*., Zhuang, L., Elsworth, D., Zhong, Z. (2023). “Frictional stability and permeability evolution of fractures subjected to repeated cycles of heating-and-quenching: granites from the Gonghe Basin, northwest China”, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 9(1), 18. https://doi.org/10.1007/s40948-023-00565-9

    [13] Wang, T., Wang, C., Zhang, F*. (2023). “Experimental study of fines migration in gap-graded soils with gas production: Implications to hydrate production from unconsolidated reservoirs”, Geoenergy Science and Engineering, 211856. https://doi.org/10.1016/j.geoen.2023.211856

    [14] Zhang, F., Cao, S., An, M*., Zhang, C., Elsworth, D. (2023). “Friction and stability of granite faults in the Gonghe geothermal reservoir and implications for injection-induced seismicity”, Geothermics, 112, 102730. https://doi.org/10.1016/j.geothermics.2023.102730

    [15] Wang, Y., Zhang, F*., Liu, F., Wang, X. (2023). “Full-scale in situ experimental study on the bearing capacity of energy piles under varying temperature and multiple mechanical load levels”, Acta Geotech. https://doi.org/10.1007/s11440-023-01904-6

    [16] Li, J*., Xu, J., Zhang, H*., Yang, W., Tan, Y., Zhang, F., Meng, L., Zang, Y., Miao, S., Guo, C., Li, Z., Lu, R., Sun, J. (2023). “High seismic velocity structures control moderate to strong induced earthquake behaviors by shale gas development”, Communications Earth & Environment, 4, 188. https://doi.org/10.1038/s43247-023-00854-x

    [17] Liu, Y., Zhang, J., Bai, J., Zhang, F.*, Tang, J. (2023), “Numerical study of hydraulic fracturing in the sectorial well-factory considering well interference and stress shadowing”, Petroleum Science. https://doi.org/10.1016/j.petsci.2023.05.020.

    [18] Zhao, L., Cai, Z., Qin, X*., Wang, Y., Teng, L., Han, D., Zhang, F., Geng, J. (2023). “An empirical elastic anisotropy prediction model in self-sourced reservoir shales and its influencing factor analysis”, Geophysics, 88(3), MR117–MR126. https://doi.org/10.1190/geo2022-0543.1

    [19] Tian, S., Zhou, J*., Xian, X., Gan, Q., Yang, K., Zheng, Y., Deng, G., Zhang, F. (2023). “Impact of supercritical CO2 exposure time on the porosity and permeability of dry and wet shale: The influence of chemo-mechanical coupling effects”, Energy, 126905. https://doi.org/10.1016/j.energy.2023.126905

    [20] Wang, T., Zhang, F*., Wang, P. (2023). “Experimental and numerical study of seepage-induced suffusion under K0 stress state”, Journal of Zhejiang University-SCIENCE A, 24 (4), 319-331. https://doi.org/10.1631/jzus.A2200198

    [21] Liu, P., Sun, M., Chen, Z., Zhang, S., Zhang, F., Chen, Y., Chen, W., Bate, B*. (2023). “Influencing factors on fines deposition in porous media by CFD–DEM simulation”, Acta Geotechnica. https://doi.org/10.1007/s11440-023-01870-z

    [22] Zhong, Z., Xu, C., Wang, L., Hu, Y., Zhang, F*. (2023). “Experimental investigation on frictional properties of stressed basalt fractures”, Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2022.12.020

    [23] Hou, L., Elsworth, D*., Zhang, F., Wang, Z., Zhang, J. (2023). “Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models”, Energy, 264, 126122.  https://doi.org/10.1016/j.energy.2022.126122

    [24] Wang, X., Zhang, F*., Tang, M., Du, X., Hou, B., Tang, J. (2023). “Numerical investigation of hydraulic fracture deflection in large-angle oblique horizontal wells with staged multi-cluster fracturing”, Geoenergy Science and Engineering, 222, 211436. https://doi.org/10.1016/j.geoen.2023.211436

    [25] Wang, T., Zhang, F*., Zheng, W. (2023). “Suffusion of Gap-Graded Soil with Realistically Shaped Coarse Grains: A DEM–DFM Numerical Study”, International Journal of Geomechanics, 23(1), 04022247. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002616

    [26] Wang, X., Tang, M., Du, X., Zhang, F*., Hou, B., Tang, J. (2023). “Three dimensional experimental and numerical investigations on fracture initiation and propagation for oriented limited entry perforation and helical perforation”, Rock Mechanics and Rock Engineering, 1-26. https://doi.org/10.1007/s00603-022-03069-2

    [27] Qin, X., Zhao, L*., Cai, Z., Wang, Y., Xu, M., Zhang, F., Han, D., Geng, J. (2022). “Compressional and shear wave velocities relationship in anisotropic organic shales”, Journal of Petroleum Science and Engineering, 219, 111070. https://doi.org/10.1016/j.petrol.2022.111070

    [28] Wang, T., Wang, P*., Yin, Z., Zhang, F. (2022). “DEM-DFM modeling of suffusion in calcareous sands considering the effect of double-porosity”, Computer and Geotechnics, 151, 104965. https://doi.org/10.1016/j.compgeo.2022.104965

    [29] Wang, X., Zhang, F*., Yin, Z., Weng, D., Liang, H., Zhou, J., Xu, B. (2022). “Numerical investigation of refracturing with/without temporarily plugging diverters in tight reservoirs”, Petroleum Science, 19(5), 2210-2226. https://doi.org/10.1016/j.petsci.2022.05.006

    [30] Li, M., Wu, J., Li, J., Zhuang, L., Wang, S., Zhang, F*. (2022). “Modeling of hydraulic fracturing in polymineralic rock with a grain-based DEM coupled with a pore network model”, Engineering Fracture Mechanics, 275, 108801.https://doi.org/10.1016/j.engfracmech.2022.108801

    [31] Zhu, H., Tang, X*., Zhang, F., McLennan, J. D. (2022). “Mechanical behavior of methane–hydrate–bearing sand with nonlinear constitutive model”, Arabian Journal for Science Engineering, 47, 12141–12167. https://doi.org/10.1007/s13369-022-06914-2

    [32] Wang, B., Li, D., Xu, B., Zhang, Y., Zhang, F*., Wang, Q., Yang, B. (2022). “Probabilistic-based geomechanical assessment of maximum operating pressure for an underground gas storage reservoir, NW China”, Geomechanics for Energy and the Environment, 100279. https://doi.org/10.1016/j.gete.2021.100279 2352-3808 

    [33] Zhang, F., Cui, L., An, M*., Elsworth, D., He, C. (2022). “Frictional stability of Longmaxi shale gouges and its implication for deep seismic potential in the southeastern Sichuan Basin”, Deep Underground Science and Engineering, 1, 3–14. https://doi.org/10.1002/dug2.12013

    [34] Zhang, F., R. Huang, M. An*, K.B. Min, D. Elsworth, H. Hofmann, X. Wang. (2022). “Competing Controls of Effective Stress Variation and Chloritization on Friction and Stability of Faults in Granite: Implications for Seismicity Triggered by Fluid Injection.” Journal of Geophysical Research: Solid Earth, e2022JB024310. https://doi.org/ 10.1029/2022JB024310

    [35] Jiang, C., Wang, X*., Zhang, F., Deng, K., Lei, Q. (2022). “Fracture activation and induced seismicity during long-term heat production in fractured geothermal reservoirs”, Rock Mechanics and Rock Engineering, 55 (8), 5235-5258. https://doi.org/10.1007/s00603-022-02882-z

    [36] Hou, B*., Cui, Z., Ding, J., Zhang, F., Zhuang, L., Elsworth, D. (2022), “Perforation optimization of layer-penetration fracturing for commingling gas production in coal measure strata”, Petroleum Science, 19,1718-1734 https://doi.org/10.1016/j.petsci.2022.03.014 

    [37] Zhang, F., Wang, T., Liu, F.*, Peng, M., Bate, B. and Wang, P. (2022). “Hydro-mechanical coupled analysis of near-wellbore fines migration and sanding from unconsolidated reservoirs”, Acta Geotechnica, 1-17.  https://doi.org/10.1007/s11440-021-01396-2

    [38] Zhang, F*., Huang, L., Yang, L., Dontsov, E., Weng, D., Liang, H., Yin, Z. and Tang, J. (2022). “Numerical investigation on the effect of depletion-induced stress reorientation on infill well hydraulic fracture propagation”, Petroleum Science, 19, 296-308. https://doi.org/10.1016/j.petsci.2021.09.014

    [39] Espinoza, W. F., Zhang, F., Dai, S*. (2022). “Impacts of temperature on the mechanical properties of Longmaxi shale outcrops using instrumented nanoindentation”, Geomechanics for Energy and the Environment, 30, 100348. https://doi.org/10.1016/j.gete.2022.100348

    [40] Yang, K., Zhou, J*., Xian, X., Zhou, L., Zhang, C., Tian, S., Lu, Z., Zhang, F. (2022). Chemical-mechanical coupling effects on the permeability of shale subjected to supercritical CO2-water exposure, Energy, 248, 123591. https://doi.org/10.1016/j.energy.2022.123591

    [41] Zhang, F., Wang, C. and Wang, T*. (2022). “Model test on backward erosion piping under a K0 stress state”, International Journal of Geomechanics, 22(4), 04022015. https://doi.org/10.1061/ (ASCE)GM.1943-5622.0002326

    [42] An, M., Zhang, F*., Min, K. B., Elsworth, D., He, C., Zhao, L. (2022). “Frictional stability of metamorphic epidote in granitoid faults under hydrothermal conditions and implications for injection-induced seismicity”, Journal of Geophysical Research: Solid Earth, e2021JB023136. https://doi. org/10.1029/2021JB023136

    [43] Wang, X., Zhang, F*., Tang, M., Du, X., and Tang, J. (2022). “Effect of stress shadow caused by multistage fracturing from multiple well pads on fracture initiation and near-wellbore propagation from infill wells”, SPE Journal, 27(01), 204-225. https://doi.org/10.2118/208577-PA

    [44] Wang, T., Zhang, F*., Furtney, J., Damjanac, B. (2022). “A review of methods, applications and limitations for incorporating fluid flow in the discrete element method”, Journal of Rock Mechanics and Geotechnical Engineering. 14(3), 1005–1024. https://doi.org/10.1016/j.jrmge.2021.10.015

    [45] Huang, L., Dontsov, E., Fu, H., Lei, Y., Weng, D., and Zhang, F*. (2022). “Hydraulic fracture height growth in layered rocks: perspective from DEM simulation of different propagation regimes”, International Journal of Solids and Structures, 238, 111395. https://doi.org/10.1016/j.ijsolstr.2021.111395 

    [46] Bate, B., Chen, X., Chen, J. Sun, M., Li, J., Zhang, S., Zhang, F., Zhan, L., Cao, J*. (2022) “Internal erosion monitoring with a rowe cell type compression–breakthrough–bender element column”, Acta Geotech. 17(6), 2365–2377. https://doi.org/10.1007/s11440-021-01413-4

    [47] Chen, Y., Zhao, L*., Pan, J., Li, C., Xu, M., Li, K., Zhang, F., and Geng, J. (2021). “Deep carbonate reservoir characterization using multi-seismic attributes via machine learning with physical constraints”, Journal of Geophysics and Engineering, 18(5), 761-775. https://doi.org/10.1093/jge/gxab049

    [48] Wang, X., Sun, X., Luo, C., Zhang, F.*, and Xu, B. (2021). “Large-scale triaxial experimental investigation of geomechanical dilation start-up for SAGD dual horizontal wells in shallow heavy oil reservoirs”, Journal of Petroleum Science and Engineering, 203, 108687. https://doi.org/10.1016/j.petrol.2021.108687

    [49] Jin, S., Wang, X., Wang, Z., Mo, S., Zhang, F., and Tang, J*. (2021). “Evaluation approach of rock brittleness index for fracturing acidizing based on energy evolution theory and damage constitutive relation”. Lithosphere, 2021(Special 4), 2864940. https://doi.org/10.2113/2021/2864940

    [50] Zhou, Z., Yang, D*., Chen, W., Zhang, X., Wu, B. and Zhang, F. (2021). “Numerical study of initiation pressure in hydraulic fracturing by Dual Criterion for non-circular wellbore”, Engineering Fracture Mechanics, 107804. https://doi.org/10.1016/j.engfracmech.2021.107804

    [51] An, M., Zhang, F*., Min, K. B., Elsworth, D., Marone, C., and He, C. (2021). “The potential for low-grade metamorphism to facilitate fault instability in a geothermal reservoir”, Geophysical Research Letters, e2021GL093552. https://doi.org/10.1029/2021GL093552

    [52] Zhang, F., Wang, X., Tang, M., Du, X., Xu, C., Tang, J*., and Damjanac, B. (2021). “Numerical investigation on hydraulic fracturing of extreme limited entry perforating in Plug-and-Perforation Completion of shale oil reservoir in Changqing Oilfield, China”, Rock Mechanics and Rock Engineering, 54(6). https://doi.org/10.1007/s00603-021-02450-x

    [53] Bate, B., Nie, S., Chen, Z*., Zhang, F., and Chen, Y. (2021) “Construction of soil-water characteristic curve of granular materials with toroidal model and artificially generated packings”, Acta Geotechnica, 16(6), 1949-1960. https://doi.org/10.1007/s11440-021-01140-w

    [54] An, M., Zhang, F*., Dontsov, E., Elsworth, D., Zhu, H., and Zhao, L. (2021). “Stress perturbation caused by multistage hydraulic fracturing: Implications for deep fault reactivation”, International Journal of Rock Mechanics and Mining Sciences, 141(5), 104704. https://doi.org/10.1016/j.ijrmms.2021.104704

    [55] Lin, Q., Cheng, Q*., Xie, Y., Zhang, F., Li, K., Wang, Y., Zhou, Y. (2021). “Simulation of the fragmentation and propagation of jointed rock masses in rockslides: DEM modeling and physical experimental verification”, Landslides ,18:993–1009.

    [56] Tang, J*., Fan, B*., Xiao, L**., Tian, S., Zhang, F., Zhang, L., and Weitz, D. (2021). “A new ensemble machine-learning framework for searching sweet spots in shale reservoirs”, SPE Journal, 26(1), 482-497. https://doi.org/10.2118/204224-PA

    [57] Chen, J., Zhou, M., Zhang*, D., Huang, H., and Zhang, F. (2021). “Quantification of water inflow in rock tunnel faces via convolutional neural network approach”, Automation in Construction, 123(5), 103526. https://doi.org/10.1016/j.autcon.2020.103526

    [58] Huang, R., Chen, Z., Zhang, F*., Zhou, X., Wang, Q., Cao, H., Zhang, H., and Yang, X. (2020). “Fault slip risk assessment and treating parameters optimization for casing deformation prevention: A case study in the Sichuan basin”, Geofluids, 2020(58), 1-17. https://doi.org/10.1155/2020/8894514

    [59] Zhang, F., Jiang, Z., Chen, Z., Yin, Z., and Tang, J*. (2020). “Hydraulic fracturing induced fault slip and casing shear in Sichuan basin: A multi-scale numerical investigation”, Journal of Petroleum Science and Engineering, 195. https://doi.org/10.1016/j.petrol.2020.107797

    [60] Li, M., Zhang, F*., Zhuang, L., Zhang, X., and Ranjith, P. (2020). “Micromechanical analysis of hydraulic fracturing in the toughness-dominated regime: Implications to supercritical carbon dioxide fracturing”, Computational Geosciences, 24(5), 1815-1831. https://doi.org/10.1007/s10596-019-09925-5

    [61] Yang, J., Yang, D., Zhang, X*., Jeffrey, R., Chen, W., Sheng, Q., and Zhang, F*. (2020). “Energy budget and fast rupture on a near-excavation fault: implications for mitigating induced seismicity”, Journal of Geophysical Research: Solid Earth, 125, e2020JB019360. https://doi.org/10.1029/2020JB019360

    [62] An, M., Zhang, F*., Chen, Z., Elsworth, D., and Zhang, L. (2020). “Temperature and fluid pressurization effects on frictional stability of shale faults reactivated by hydraulic fracturing in the Changning Block, Southwest China”, Journal of Geophysical Research: Solid Earth, 125, e2020JB019584. https://doi.org/10.1029/2020JB019584

    [63] An, M., Zhang, F*., Elsworth, D., Xu, Z., Chen, Z., and Zhang, L. (2020). “Friction of Longmaxi shale gouges and implications for seismicity during hydraulic fracturing”, Journal of Geophysical Research: Solid Earth, 125, e2020JB019885. https://doi.org/10.1029/2020JB019885

    [64] Zhang, F., Wang, T., Liu, F., Peng, M*., Furtney, J., and Zhang, L. (2020). “Modeling of fluid-particle interaction by coupling the discrete element method with a dynamic fluid mesh: Implications to suffusion in gap-graded soils”, Computer and Geotechnics, 124, 103617. https://doi.org/10.1016/j.compgeo.2020.103617

    [65] Wang, C*., Elsworth, D., Fang, Y., and Zhang, F. (2020). “Influence of fracture roughness on the shear strength, slip stability and permeability: A mechanistic analysis by three-dimensional digital rock modeling”, Journal of Rock Mechanics and Geotechnical Engineering, 12(4), 720-731. https://doi.org/10.1016/j.jrmge.2019.12.010

    [66] Yin, Z., Huang, H., Zhang, F*., Zhang, L., and Maxwell, S. (2020). “Three-dimensional distinct element modeling of fault reactivation and induced seismicity due to hydraulic fracturing injection and backflow”, Journal of Rock Mechanics and Geotechnical Engineering, 12(4), 720-731. https://doi.org/10.1016/j.jrmge.2019.12.009

    [67] Huang, L., Liu, J., Zhang, F*., Fu, H., Zhu, H., and Damjanac, B. (2020). “3D lattice modeling of hydraulic fracture initiation and near-wellbore propagation for different perforation models”, Journal of Petroleum Science and Engineering, 191, 107169. https://doi.org/10.1016/j.petrol.2020.107169

    [68] Zhang, Z., Chen, F., Zhang, C., Wang, C., Wang, T., Zhang, F*., and Zhao, H. (2020). “Numerical simulation of rock failure process with a 3D grain-based rock model”, Advances in Civil Engineering, 2020(4), 1-11. https://doi.org/10.1155/2020/8810022

    [69] Yin, Z., Wang, P*., Zhang, F. (2020). “Effect of particle shape on the progressive failure of shield tunnel face in granular soils by coupled FDM-DEM method”. Tunnelling and Underground Space Technology, 100, 103394. https://doi.org/10.1016/j.tust.2020.103394

    [70] Wang, T., Huang, H., Zhang, F*., and Han, Y. (2020). “DEM-continuum mechanics coupled modeling of slot-shaped breakout in high-porosity sandstone”, Tunnelling and Underground Space Technology, 98, 103348. https://doi.org/10.1016/j.tust.2020.103348

    [71] Zhang, F*., Yin, Z., Chen, Z., Maxwell, S., Zhang, L., and Wu, Y. (2020). “Fault reactivation and induced seismicity during multistage hydraulic fracturing: Microseismic analysis and geomechanical modeling”, SPE Journal, 25(02), 0692-0711. https://doi.org/10.2118/199883-PA

    [72] Zhang, F., An, M., Zhang, L*., Fang, Y., and Elsworth, D. (2020). “Effect of mineralogy on friction-dilation relationships for simulated faults: Implications for permeability evolution in caprock faults”, Geoscience Frontiers, 11(2), 439-450. https://doi.org/10.1016/j.gsf.2019.05.014

    [73] An, M., Huang, H., Zhang, F*., and Elsworth, D. (2020). “Effect of slick-water fracturing fluid on the frictional properties of shale reservoir rock gouges”, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6, 28. https://doi.org/10.1007/s40948-020-00153-1

    [74] 王洋,张丰收*,鲁克文,孙婉.大型地埋管群地源热泵三维传热-渗流耦合模拟[J].孙婉.太阳能学报,2024.

    [75] 汤继周,王小华,杜现飞,马兵,张丰收*.扇形井网体积压裂地质工程一体化参数优化方法[J].石油勘探与开发,2023,50(4):845-852.

    [76] 王小华,罗浩然,张丰收*.水平井射孔压裂完井下控制近井筒裂缝复杂度的参数优化[J].岩石力学与工程学报,2022,505-505.

    [77] 张丰收,李猛利,张重远*,何满潮,张盛生,衡德.高地应力下深部岩芯饼化裂缝发展规律及机制研究[J/OL]. 岩石力学与工程学报,2022,41(3):533-542.

    [78] 付海峰,才博,庚勐,贾爱林,翁定为,梁天成,张丰收,问晓勇,修乃岭.基于储层纵向非均质性的水力压裂裂缝三维扩展模拟 [J]. 天然气工业 , 2022, 42(5): 56-68.

    [79] 李博,朱强,张丰收*,赵程,伍法权.基于矿物晶体模型的非均质性岩石双裂纹扩展规律研究[J].岩石力学与工程学报,2021,40(06):1119-1131.

    [80] 孙君,王小华,徐斌,张丰收*.强非均质超稠油砂储层双水平井扩容启动数值模拟研究[J].科学技术与工程,2021,21(15):6262-6271.

    [81] 侯冰,武安安,常智,尤源,寇晓璇,张丰收.页岩油储层多甜点压裂裂缝垂向扩展试验研究[J].岩土工程学报,2021,43(07):1322-1330.

    [82] 张丰收,吴建发,黄浩勇,王小华*,罗浩然,岳文翰,侯冰.提高深层页岩裂缝扩展复杂程度的工艺参数优化[J].天然气工业,2021,41(01):125-135.

    [83] 付海峰,黄刘科,张丰收*,胥云,才博,梁天成,王欣.射孔模式对水力压裂裂缝起裂与扩展的影响机制研究[J].岩石力学与工程学报,2021,40(S2):3163-3173.

    [84] 张少强,侯圣均,江传彬,程宏,蒋振源,张丰收*.走滑断层错动作用下隧道变形的数值分析[J].现代隧道技术,2020,57(S1):418-424.

    [85] 蒋振源,陈朝伟,张平,张丰收.断块滑动引起的套管变形及影响因素分析[J].石油管材与仪器,2020,6(04):30-37. 


    近年会议论文:

    [1] Li, X., Zhang, F., Du, M., Xiu, N., Weng, D., Cai, B., Fu, H., Huang, L. “Numerical Study on Permeability Evolution of a Natural Fracture in Granite During Shearing”, 57th U.S. Rock Mechanics/Geomechanics Symposium, Atlanta, Georgia, USA, June 2023. https://doi.org/10.56952/ARMA-2023-0196

    [2] Cui, L., Zhang, F., An, M., Zhuang, L., Wang, H. “Effect of Heating-Cooling Cycles on the Friction-Permeability Evolution of Granite Fractures Under Shearing”, 57th U.S. Rock Mechanics/Geomechanics Symposium, Atlanta, Georgia, USA, June 2023. https://doi.org/10.56952/ARMA-2023-0458

    [3] Hou, L., Zhang, F., Elsworth, D. “Post-Fracturing Evaluation of Fractures by Interpreting the Dynamic Matching Between Proppant Injection and Fracture Propagation”, 57th U.S. Rock Mechanics/Geomechanics Symposium, Atlanta, Georgia, USA, June 2023. https://doi.org/10.56952/ARMA-2023-0342

    [4] Du, M., Zhang, F., Liu, F., Zhuang, L. “Numerical study on the effect of localized fluid pressurization on shear and hydraulic behavior of a natural fracture in granite”, ARMA-2022-0376, 56th US Rock Mechanics / Geomechanics Symposium, Santa Fe, New Mexico, USA, June 2022. https://doi.org/10.56952/ARMA-2022-0376

    [5] Luo, H., Shi, X., Gou, Q., Zhang, D., Zhang, F., Cui, L. “Friction-stability-permeability relationship of Longmaxi shale fractures from the Southern Sichuan Basin, southwest China”, ARMA-2022-0202, 56th US Rock Mechanics / Geomechanics Symposium, Santa Fe, New Mexico, USA, June 2022. https://doi.org/10.56952/ARMA-2022-0202

    [6] Li, M., Zhang, F., Zhuang, L. “Micromechanical analysis of hydraulic fracturing in granite with a grain-based DEM coupled with pore network model” ARMA-IGS-21-089, ARMA/DGS/SEG International Geomechanics Symposium, Virtual, November 2021.

    [7] Elsworth, D., Fang, Y., Im, K., Wang, C., Ishibashi, T., Jia, Y., Yildirim, E.C., Zhang, F. “Seismicity-permeability coupling in the breaching and sealing of reservoirs and caprocks”, 82nd EAGE Annual Conference & Exhibition, Oct 2021, Volume 2021, p.1-5. https://doi.org/10.3997/2214-4609.202010413

    [8] Zhang, K., Tang, M., Du, X., Wang, X., Zhang, F., Tang, J. “Stress disturbance induced by multiple-well fracturing and its influence on initiation and near-wellbore propagation from infill horizontal perforated borehole”, IOP Conference Series: Earth and Environmental Science, Volume 861, 072119. https://doi.org/10.1088/1755-1315/861/7/072119

    [9] An, M., Zhang, F., Elsworth, D. “HPHT fault gouge friction experiments: implication for hydraulic fracturing induced seismicity in the Sichuan Basin” ARMA-2021-1572, 55th US Rock Mechanics/Geomechanics Symposium, Virtual, June 2021. 

    [10] Tang, J., Fan, B., Lu, W., Liang, L., Zhang, F., Cai, B. “Machine Learning Models for Predicting Well Production Based on Fracturing Construction Data”, SPE Annual Technical Conference and Exhibition, 2020.

    [11] Wu, B., Yan, Q., Wang, L., Chen, Q., Wang, T., and Zhang, F. “DEM simulation of internal erosion around a submerged defective pipe”, IOP Conference Series: Earth and Environmental Science, Volume 570, China Rock 2020, Beijing, China, 23-26 October 2020. https://doi.org/10.1088/1755-1315/570/2/022050

    [12] Wang, X., Zhang, F., Sun, J., and Xu, B. “Experimental investigation on the SAGD dilation start-up in shallow heavy oil reservoirs”, IOP Conference Series: Earth and Environmental Science, Volume 570, China Rock 2020, Beijing, China, 23-26 October 2020. https://doi.org/10.1088/1755-1315/570/3/032046

    [13] Xie, J., Tang, J., Sun, S., Song, Y., Huang, H., Pei, H., Li, Y., and Zhang, F. “Numerical investigation of proppant transport and placement along opened bedding interfaces”, SPE Western Regional Meeting, 200801.


最后更新时间:--
Copyright © 2020 civileng.tongji.edu.cn 同济大学土木工程学院 All rights reserved.
地址:上海市四平路1239号同济大学土木工程学院    
邮编:200092