职称:教授
学位:工学博士学位
[1] 结构性能演化与提升
[2] 工程结构智能检测
[3] 历史建筑保护与再利用
[1] 国家自然科学基金项目,51878486,疲劳荷载作用下锈蚀预应力混凝土梁时变可靠性分析与寿命预测,2019.1-2022.12,主持
[2] 国家自然科学基金项目,51578402,锈蚀钢筋与疲劳损伤混凝土间粘结滑移统一本构关系,2016.1~2019.12,主持
[3] 国家自然科学基金项目,51078268,基于概率的锈蚀钢筋混凝土梁时变抗力研究,2011.1~2013.12,主持
[4] 国家自然科学基金项目,50508028,碳纤维复合材料加固锈蚀钢筋混凝土构件受力性能的退化规律,2006.1~2008.12,主持
[5] 国家自然科学基金重大国际(地区)合作研究项目,51320105013,基于时变可靠性分析的混凝土结构全寿命设计理论,2014.1~2018.12,参加
[6] 国家重点基础研究发展计划(973计划),2015CB655103,严酷环境下混凝土结构性能退化及可预期寿命设计,2015.1~2019.12,子课题负责人
[7] 国家重点基础研究发展计划(973计划),2009cb623203,环境友好现代混凝土的基础研究,2009.1~2014.12,子课题负责人
[8] 国家高科技研究发展计划(863计划),2012aa050903,荷载与环境因素耦合作用下核电站关键混凝土结构可靠性保障技术研究,2012.1~2015.12,子课题负责人
[9]国家高科技研究发展计划(863计划),2006aa04z415,综合环境下大型土木工程基础设施耐久性试验技术,2006.11~2008.12,子课题负责人
[10]国家科技支撑计划,2006baj03a07,重点历史建筑可持续利用与综合改造技术研究,2007.1~2010.12,参加
[11] 教育部新世纪优秀人才支持计划,ncet-13-0427,沿海混凝土结构全寿命设计理论,2014.1~2016.12,主持
[12] 教育部重点科学研究项目,105070,疲劳荷载下既有混凝土构件cfrp加固体系的耐久性,2005.10~2008.10,主持
[13] 上海市科委重点科研项目,19DZ1202402,历史建筑保护修缮与耐久性评估技术,2019.10~2022.9,主持
[14] 上海市科委科研项目,15dz1205000,上海地铁盾构隧道结构耐久性及其防治技术研究,2015.7~2017.12,参加
主要论著
[1]张誉,蒋利学,张伟平,屈文俊. 混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003.
[2]顾祥林,张伟平,黄庆华,姜超,徐宁. 混凝土结构环境作用,北京:科学出版社,2021.12
期刊论文(英文)
[1] Jia D F, Zhang W P, Liu Y P. Systematic Approach for Tunnel Deformation Monitoring with Terrestrial Laser Scanning[J]. Remote Sensing. 2021,13,3519.
[2] Jia D F, Zhang W P,Wang Y H, Liu Y P. A New Approach for Cylindrical Steel Structure Deformation Monitoring by Dense Point Clouds[J]. Remote Sensing. 2021, 13, 2263.
[3] Qiu J L, Zhang H, Zhou J T, Zhang W P*. An SMFL-based non-destructive quantification method for the localized corrosion cross-sectional area of rebar[J]. Corrosion Science 192 (2021) 109793.
[4] Zuo H R, Zhang W P*, Wang B T, Gu X L Seismic behaviour of masonry infilled hinged steel frames with openings: Experimental and numerical studies[J]. Bulletin of Earthquake Engineering, 2021(19):1311-1335
[5] Liu X G, Zhang W P*, Miao J J. Probability distribution model of stress impact factor for corrosion pits of high-strength prestressing wires [J]. Engineering Structures,2021(230):111686
[6] Ba G Z, Zhang W P*, Miao J J. Tensile behavior of corroded steel bars at elevated temperatures[J]. Journal of Materials in Civil Engineering, 2021, 33(4):040210128.
[7] Zhang W P, Chen J P, Yu Q Q*, Gu X L. Corrosion evolution of steel bars in RC structures based on Markov chain modeling[J]. Structural Safety, 2021(88) :102037
[8] Liao K X, Zhang Y P*, Zhang W P,Wang Y. Modeling constitutive relationship of sulfate-attacked concrete. Construction and Building Materials, 2020(260):119902
[9] Chen J Y, Zhang W P*, Gu X L. Experimental and numerical investigation of chloride-induced reinforcement corrosion and mortar cover cracking[J]. Cement and Concrete Composites, 2020 (111): 103620.
[10]Zhang W P*, Zhang Y P, Li H, Gu X L. Experimental investigation of fatigue bond behavior between deformed steel bar and concrete. Cement and Concrete Composites, 2020(108): 103515.
[11]Chen J Y, Zhang W P*, Gu X L. Modeling time-dependent circumferential non-uniform corrosion of steel bars in concrete considering corrosion-induced cracking effects[J]. Engineering Structures, 2019, 201:109766
[12]Zhang W P, Li C K, Gu X L, Zeng Y H. Variability in Cross-Sectional Areas and Tensile Properties of Corroded Prestressing Wires [J]. Construction and Building Materials, 2019 (228): 116830
[13]Zhang W P, Chen J Y, Luo X J. Effects of impressed current density on corrosion induced cracking of concrete cover [J]. Construction and Building Materials, 2019 (204): 213-223.
[14]Ye Z W, Zhang W P*, Gu X L. Experimental Investigation on Shear Fatigue Behavior of Reinforced Concrete Beams with Corroded Stirrups[J]. ASCE Journal of Bridge Engineering, 2019, 24(2): 04018117
[15]Ye Z W, Zhang W P*, Gu X L. Modeling of Shear Behavior of Reinforced Concrete Beams with Corroded Stirrups Strengthened with FRP Sheets[J]. Journal of Composites for Construction, 2018, 22(5): 04018035
[16]Ye Z W, Zhang W P*, Gu X L. Deterioration of shear behavior of corroded reinforced concrete beams[J]. Engineering Structures, 2018, 168:708-720.
[17]Zhang W P, Zhang H F, Gu X L*, Liu W. Structural behavior of corroded reinforced concrete beams under sustained loading [J]. Construction and Building Materials, 2018 (174): 675-683.
[18]Min H G, Zhang W P*, Gu X L. Effects of load damage on moisture transport and relative humidity response in concrete[J]. Construction & Building Materials, 2018, 169:59-68.
[19]Chen J Y, Zhang W P*, Gu X L. Mesoscale model for cracking of concrete cover induced by reinforcement corrosion[J]. Computers and Concrete, 2018, 22(1):53-62
[20]Min H G, Zhang W P*, Gu X L, Cerny R.. Coupled heat and moisture transport in damaged concrete under an atmospheric environment[J]. Construction & Building Materials, 2017, 143:607-620.
[21]Liu X G, Zhang W P*, Gu X L. Degradation of Mechanical Behavior of Corroded Prestressing Wires Subjected to High-Cycle Fatigue Loading[J]. ASCE Journal of Bridge Engineering, 2017, 22(5): 04017004
[22]Zhang W P*, Ye Z W, Gu X L. Assessment of Fatigue Life for Corroded Reinforced Concrete Beams under Uniaxial Bending[J]. ASCE Journal of Structural Engineering, 2017, 143(7): 04017048.
[23]Zhang W P, Ye Z W, Gu X L. Effects of Stirrup Corrosion on Shear Behavior of Reinforced Concrete Beam[J]. Journal of Structure and Infrastructure Engineering, 2017, 13(8): 1081-1092
[24]Zhang W P, Min H G, Gu X L. Temperature response and moisture transport in damaged concrete under an atmospheric environment[J]. Construction and Building Materials, 2016, 123: 290-299.
[25]Zhang W P, Liu X G, Gu X L. Fatigue behavior of corroded prestressed concrete beams[J]. Construction and Building Materials, 2016,106:198-208.
[26]Zhang W P, Chen H, Gu X L*. Bond behaviour between corroded steel bars and concrete under different strain rates [J]. Magazine of Concrete Research, 2016,68(7):364-378.
[27]Zhang W P, Du H L, Li Q, Li X, Gu X L. In-plane Seismic Performance of Chinese Traditional Rowlock Cavity Walls under Low-cycle Loading[J]. Journal of Architechture Heritage, 2016,10:204-216.
[28]Zhang W P, Chen H, Gu X L*. Tensile Behavior of Corroded Steel Bars under Different Strain Rates [J]. Magazine of Concrete Research, 2016,68(3):127-140.
[29]Zhang H F, Zhang W P, Gu X L*, Jin X Y, Jin N G. Chloride penetration in concrete under marine atmospheric environment - analysis of the influencing factors[J]. Journal of Structure and Infrastructure Engineering, 2016,12(11):1428-1438
[30]Zhang W P, Tong F, Gu X L, Xi Y P. Study on Moisture Transport in Concrete in Atmospheric Environment[J]. Computers and Concrete,2015,16(5):775-793.
[31]Zhang W P, Min H G, Gu X L, Xi Y P, Xing Y S. Mesoscale model for thermal conductivity of concrete [J]. Construction and Building Materials, 2015(98):8-16.
[32]Zhang W P, Zhou B B, Gu X L*, and Dai H C. Probability Distribution Model for Cross-Sectional Area of Corroded Reinforcing Steel Bars [J]. Journal of Materials in Civil Engineering, ASCE, 2014, 26(5): 822–832.
[33]Wang X G, Zhang W P, Gu X L*, Dai H C. Determination of residual cross-sectional areas of corroded bars in reinforced concrete structures using easy-to-measure variables [J]. Construction and Building Materials, 2013(38): 846-853.
[34]Eskandari-Ghadi, M., Zhang W P., Xi, Y., and Sture, S. Modeling of Moisture Diffusivity of Concrete at Low Temperatures [J]. Journal of Engineering Mechanics, 2013, 139(7): 903–915.
[35]Huang Q H, Jiang Z L, Zhang W P*, Gu X L, Dou X J. Numerical Analysis of the Effect of Coarse Aggregate Distribution on Concrete Carbonation [J]. Construction and Building Materials,2012(37): 27-35.
[36]Zhang W P, Song X B, Gu X L*, Li S B. Tensile and fatigue behavior of corroded rebars[J]. Construction and Building Materials. 2012, 34:409-417.
[37] Zhang W P, Song X B, Gu X L, Tang H Y. Compressive behavior of longitudinally cracked timber columns retrofitted using FRP sheets [J]. Journal of Structural Engineering, ASCE. 2012, 138(1): 90-98 .
[38]Gu X L, Zhang W P, Ouyang Y, and Li Y P. Shearing Capacity of Masonry Structural Walls Strengthened by CFRP Plates [J]. Science and Engineering of Composite Materials, 2005, 12(3): 193-202
期刊论文(中文)
[1] 贾东峰,张伟平,刘燕萍.基于海量点云的发电厂承重结构形变分析[J].测绘与空间地理信息,2020,43(6):17-22
[2] 贾东峰,张伟平,刘燕萍.多尺度空间下的隧道裂缝与渗水区域检测. 同济大学学报(自然科学版),2019,47(12): 1825-1830
[3] 叶志文,张伟平*,顾祥林.海洋大气环境下钢筋混凝土梁的时变性能[J].建筑结构学报, 2019, 40(1): 74-81.
[4] 刘西光,张伟平*,叶志文,顾祥林.疲劳损伤锈蚀预应力混凝土梁受力性能研究[J].建筑结构学报, 2019, 40(1): 89-96.
[5] 张伟平,王浩,顾祥林.骨料随机分布对混凝土导热性能影响的数值分析[J].建筑材料学报, 2017, 20(2):168-173.
[6] 张伟平,童菲,顾祥林,混凝土导热系数的试验研究与预测模型[J].建筑材料学报, 2015,18(2):1-7.
[7] 王宝通,张伟平*,顾祥林,王璐.带填充墙历史建筑钢框架抗震性能有限元分析[J].建筑结构, 2015, 45(10):26-31
[8] 王宝通,张伟平*,顾祥林.砌体填充墙框架抗震性能数值模拟方法分析[J].武汉大学学报.2015,48(3):344-349
[9] 张伟平, 李崇凯,顾祥林,代红超.锈蚀钢筋的随机本构关系[J].建筑材料学报, 2014, 17(5):920-926.
[10]张伟平, 罗丹羽,陈辉,顾祥林.不同加载速率下钢筋与混凝土间粘结性能试验[J].中国公路学报, 2014, 27(12):11-17.
[11]张伟平, 张庆章,顾祥林,钟丽娟,黄庆华.环境条件和应力水平对混凝土中氯离子传输的影响[J].江苏大学学报(自然科学版), 2013, 34(1): 101-106.
[12] 陈辉, 张伟平*,顾祥林.高应变率下锈蚀钢筋力学性能试验研究[J].建筑材料学报, 2013, 16(5): 869-875.
[13] 徐宁, 张伟平*,顾祥林,黄庆华.混凝土结构空间多尺度环境作用研究[J].同济大学学报, 2012, 40(2): 159-166.
[14] 张伟平,王晓刚,顾祥林. 碳纤维布加固锈蚀钢筋混凝土梁抗弯性能研究[J]. 土木工程学报,2010,43(6):34-41.
[15] 张伟平,宋力,顾祥林. 碳纤维布加固锈蚀钢筋混凝土梁疲劳性能试验研究[J]. 土木工程学报,2010,43(7):43-50.
[16] 张伟平,顾祥林,金贤玉. 混凝土中钢筋锈蚀机理及锈蚀钢筋力学性能研究[J].建筑结构学报, 2010 ,31:327-332
[17] 张伟平,李士彬,顾祥林,朱慈勉.自然锈蚀钢筋的轴向拉伸疲劳试验[J].中国公路学报,2009, 22(2):53-58
[18] 张伟平,崔玮,顾祥林,王晓刚.碳纤维布约束对锈蚀钢筋与混凝土间粘结性能的影响[J].建筑结构学报, 2009,30(5):162-168
[19] 张伟平,管小军,任佳俊,顾祥林.环氧涂层对混凝土抗氯离子渗透性能的影响[J].建筑材料学报, 2008, 11(3): 339-344.
[20] 张伟平,顾祥林,陈涛.大面积地面堆载作用下厂房结构安全性的评估[J].四川建筑科学研究, 2007, 33(3):74~78.
[21] 张伟平,商登峰,顾祥林.锈蚀钢筋应力-应变关系研究[J].同济大学学报(自然科学版), 2006, 34(5):586-592.
[22] 张伟平,张誉,一般大气环境条件下混凝土中钢筋开始锈蚀时间的预测[J]. 四川建筑科学研究, 2002, 28(1) : 27-29
[23] 张伟平,顾祥林,张誉.砖墙填充框架在地基不均匀沉降作用下附加内力的计算分析[J].四川建筑科学研究, 2002, 28(2):23-25.
[24] 张伟平,张誉,混凝土中钢筋锈胀过程的计算机仿真分析[J]. 同济大学学报, 2001, 29(11) : 1374-12377.
[25] 张伟平,张誉,胀裂后锈蚀钢筋与混凝土粘结性能退化规律的试验研究[J]. 建筑结构, 2001, 32(1) : 31-33.
[26] 张伟平,张誉,锈胀开裂后钢筋混凝土粘结滑移本构关系研究[J]. 土木工程学报, 2001, 34(5) : 40-44.
专利
[1] 张伟平,闵红光,顾祥林.一种混凝土热湿耦合传输试验装置及方法.发明专利,专利号:ZL201511022077.X,授权公告日:2017.10.31
[2] 顾祥林, 张伟平,欧阳煜,陈小杰.既有结构梁板受力性能现场加载的新型试验装置.实用新型,授权公告号: CN2840008, 专利号:ZL 2005 2 0045496.0, 授权公告日: 2006.11月22
[3] 张伟平,顾祥林, 冯展磊,刘丽梅.纤维增强复合材料与基体粘结性能新型试验装置.实用新型,授权公告号: CN2840010, 专利号:ZL 2005 2 0045424.6, 授权公告日: 2006.11.22
软件著作权
[1]基于动态数据库的环境温湿度预测软件,登记号:2015SR262798,2015年12月18日
[2]一般大气环境的区划软件,登记号:2015SR262799,2015年12月18日
[3]基于点云的历史建筑断面图快速绘制系统1.0, 登记号:2019SR1021886,2019年2月2日
[4]海量点云自适应压缩软件1.0, 登记号:2019SR1021886,2019年4月1日