周舒威

职称:教授

学位:博士

    研究方向

    1. 岩石地下能源开发与储存

    2. 岩石断裂高性能数值模拟方法

    3. 地下工程数字孪生

    4. 压缩空气储能

    5. 压缩氢气储能

    研究项目

    主持项目


        A. 纵向课题

            1. 国家自然科学基金面上项目,循环热力作用下压气储能洞室裂隙围岩破裂演化机制与止裂控制,2023-2026

            2. 国家自然科学基金优青(HW)项目,地下能源开发与储存围岩断裂分析,2022-2024

            3. 新疆维吾尔自治区科技重大专项,基于地热利用的高寒隧道绿色保温技术研究,2020-2024

            4. 中央高校基本科研业务费项目,大型废弃矿井超高压氢气储能多场耦合及控制技术研究,2023

            5. 中央高校基本科研业务费项目,横观各向同性岩石热断裂相场方法研究,2022

            6. 中央高校基本科研业务费项目,循环荷载作用下类岩石材料受力变形及断裂特性研究,2021

            7. CSC-DAAD中德博士后联合项目,Fracture initiation and propagation in surrounding rock mass of large-scale underground caverns during compressed air energy storage operation,2016-2018


        B. 横向课题

            1. 深圳外环高速公路深圳段工程隧道分岔结构设计可行性研究,2022-2023

            2. 井下巷道和防水闸墙稳定性研究,2021-2022

            3. 邻高强度采动巷道围岩稳定性与长期变形控制关键技术研究,2021-2022

            4. 强采动影响区域半永久巷道长期稳定性控制研究,2023-2024


        C. 本科生课题

            1. 高压储氢内衬洞室密封层的选取和设计,2023-2024


    参与项目


        A. 纵向课题

            1. 重点研发青年科学家项目,深部稀有金属矿下行连续智能开采理论与技术,2022-2024




    出版论著

    学术专著

    1.  夏才初; 周舒威; 周瑜; 张平阳; 压缩空气储能的地下岩石内衬洞室关键技术, 同济大学出版社, 2020.


    代表性论文

    1. Zhou, Shuwei; Zhuang, Xiaoying; Rabczuk, Timon*; Phase field modeling of brittle compressive-shear fractures in rock-like materials: A new driving force and a hybrid formulation , Computer Methods in Applied Mechanics and Engineering, 2019, 355: 729-752. (期刊论文)

    2. Zhou, Shuwei; Zhuang, Xiaoying; Rabczuk, Timon*; Phase-field modeling of fluid-driven dynamic cracking in porous media , Computer Methods in Applied Mechanics and Engineering, 2019, 350: 169-198. (期刊论文)

    3. Zhou, Shuwei; Zhuang, Xiaoying; Rabczuk, Timon*; A phase-field modeling approach of fracture propagation in poroelastic media , Engineering Geology, 2018, 240: 189-203. (期刊论文)

    4. Zhou, Shuwei; Xia, Caichu*; Hu, Yongsheng; Zhou, Yu; Zhang, Pingyang; Damage modeling of basaltic rock subjected to cyclic temperature and uniaxial stress , International Journal of Rock Mechanics and Mining Sciences, 2015, 77: 163-173. (期刊论文)

    5. Zhou, Shuwei; Xia, Caichu*; Du, Shigui; Zhang, Pingyang; Zhou, Yu; An Analytical Solution for Mechanical Responses Induced by Temperature and Air Pressure in a Lined Rock Cavern for Underground Compressed Air Energy Storage, Rock Mechanics and Rock Engineering, 2015, 48(2): 749-770. (期刊论文)


    其余论文

    1. Zhang C, Zhou S*(通讯作者), Xu Y, et al. Phase field method of multi-mode fracture propagation in transversely isotropic brittle rock[J]. Theoretical and Applied Fracture Mechanics, 2023: 104134.(SCI)

    2. Junzhe Duan, Caichu Xia, Shuwei Zhou*, Shanpeng Cao. Analytical solution for the temperature field of cold region tunnels that considers thermal resistance, Cold Regions Science and Technology, Volume 215, 2023,103984.

    3. Ziliang Lin, Caichu Xia, Shuwei Zhou*, Shigui Du. Experimental investigation of the temperature field of a frost-penetration tunnel based on a whole life cycle laboratory test. Tunnelling and Underground Space Technology, Volume 142,2023,105378.

    4. Xia C, Xu Y, Zhou S*, et al. Fracture initiation and propagation in the lined underground caverns for compressed air energy storage: Coupled thermo-mechanical phase-field modeling[J]. Computers and Geotechnics, 2023, 157: 105329.

    5. Zhang Y, Xia C*, Zhou S*, et al. A novel sustainable cooling system in a tunnel with high geotemperature: Concept and thermal performance[J]. Tunnelling and Underground Space Technology, 2023, 137: 105122.

    6. Qin S, Xia C*, Zhou S*. Air tightness of compressed air storage energy caverns with polymer sealing layer subjected to various air pressures[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(8): 2105-2116.

    7. Zhang Y, Xia C*, Zhou S*, et al. A new sustainable energy based freeze proof method for drainage system in cold-region tunnels: A case study of Tianshan Shengli Tunnel[J]. Case Studies in Thermal Engineering, 2022, 34: 102020.

    8. Duan J, Zhou S*, Xia C, et al. A dynamic phase field model for predicting rock fracture diversity under impact loading[J]. International Journal of Impact Engineering, 2023, 171: 104376.

    9. Xu Y, Zhou S*, Xia C*, et al. A new phase field model for mixed-mode brittle fractures in rocks modified from triple shear energy criterion[J]. Acta Geotechnica, 2022, 17(12): 5613-5637.

    10. Zhou S, Zhang C, Xu Y, et al. A hybrid phase field method for modeling thermal fractures in brittle rocks: fracture diversity from a modified driving force[J]. International Journal of Fracture, 2022, 238(2): 185-201.

    11. Zhuang X, Zhou S, Huynh G D, et al. Phase field modeling and computer implementation: A review[J]. Engineering Fracture Mechanics, 2022, 262: 108234.

    12. Zhuang X, Li X, Zhou S*. Three-dimensional phase field feature of longitudinal hydraulic fracture propagation in naturally layered rocks under stress boundaries[J]. Engineering with Computers, 2023, 39(1): 711-734.

    13. Zhuang X, Li X, Zhou S*. Transverse penny-shaped hydraulic fracture propagation in naturally-layered rocks under stress boundaries: A 3D phase field modeling[J]. Computers and Geotechnics, 2023, 155: 105205.

    14. Xu Y, Zhou S*, Xia C*, et al. Three-dimensional thermo-mechanical analysis of abandoned mine drifts for underground compressed air energy storage: A comparative study of two construction and plugging schemes[J]. Journal of Energy Storage, 2021, 39: 102696.

    15. Zhou S, Zhuang X, Zhou J, et al. Phase field characterization of rock fractures in Brazilian splitting test specimens containing voids and inclusions[J]. International Journal of Geomechanics, 2021, 21(3): 04021006.

    16. Zhuang XY, Zhou SW*(通讯作者), Sheng M, Li GS. On the hydraulic fracturing in naturally-layered porous media using the phase field method [J]. Engineering Geology, 2020. (SCI)

    17. Lin J, Zhou S*(通讯作者), Guo H. A deep collocation method for heat transfer in porous media: Verification from the finite element method [J]. Journal of Energy Storage, 2020, 28: 101280. (SCI)

    18. Zhou S, Zhuang X, Rabczuk T. Phase field method for quasi-static hydro-fracture in porous media under stress boundary condition considering the effect of initial stress field[J]. Theoretical and Applied Fracture Mechanics, 2020: 102523. (SCI)

    19. Zhou S, Zhuang X. Phase field modeling of hydraulic fracture propagation in transversely isotropic poroelastic media. Acta Geotechnica, 2020. (SCI)

    20. Zhou S, Ma J. Phase field characteristic of multizone hydraulic fracturing in porous media: the effect of stress boundary[J]. European Journal of Environmental and Civil Engineering, 2020: 1-21. (SCI)

    21. Li K, Zhou S*(通讯作者). Numerical investigation of multizone hydraulic fracture propagation in porous media: new insights from a phase field method [J]. Journal of Natural Gas Science and Engineering, 2019, 66: 42-59. (SCI)

    22. Zhou S W, Xia C C. Propagation and coalescence of quasi-static cracks in Brazilian disks: an insight from a phase field model [J]. Acta Geotechnica, 2019, 14(4): 1195-1214. (SCI)

    23. Zhuang, Xiaoying*; Zhou, Shuwei; An Experimental and Numerical Study on the Influence of Filling Materials on Double-Crack Propagation, Rock Mechanics and Rock Engineering, 2020, 53(12): 5571-5591. (期刊论文)

    24. Zhou, Shuwei; Xia, Caichu*; Zhou, Yu; Long-term stability of a lined rock cavern for compressed air energy storage: thermo-mechanical damage modeling , European Journal of Environmental and Civil Engineering, 2020, 24(12): 2070-2093. (期刊论文)

    25. Tan, Fei; Lv, Jiahe; Jiao, Yuyong*; Liang, Jiawei; Zhou, Shuwei; Efficient evaluation of weakly singular integrals with Duffy-distance transformation in 3D BEM , Engineering Analysis with Boundary Elements, 2019, 104: 63-70. (期刊论文)

    26. Zhou, Shuwei*; Zhuang, Xiaoying; Adaptive phase field simulation of quasi-static crack propagation in rocks, Underground Space, 2018, 3(3): 190-205. (期刊论文)

    27. Zhou, Shuwei*; Fracture Propagation in Brazilian Discs with Multiple Pre-existing Notches by Using a Phase Field Method , Periodica Polytechnica Civil Engineering, 2018, 62(3): 700. (期刊论文)

    28. Zhou, Shuwei; Zhuang, Xiaoying; Zhu, Hehua; Rabczuk, Timon*; Phase field modelling of crack propagation, branching and coalescence in rocks , Theoretical and Applied Fracture Mechanics, 2018, 96: 174-192. (期刊论文)

    29. Zhou, Shuwei; Rabczuk, Timon*; Zhuang, Xiaoying; Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies , Advances in Engineering Software, 2018, 122: 31-49. (期刊论文)

    30. Zhou, Shuwei; Xia, Caichu*; Zhou, Yu; A theoretical approach to quantify the effect of random cracks on rock deformation in uniaxial compression, Journal of Geophysics and Engineering, 2018, 15(3): 627. (期刊论文)

    31. Zhou, Yu; Xia, Caichu*; Zhao, Haibin; Mei, Songhua; Zhou, Shuwei; An iterative method for evaluating air leakage from unlined compressed air energy storage (CAES) caverns , Renewable Energy, 2018, 120: 434-445. (期刊论文)

    32. 周瑜; 夏才初*; 周舒威; 张平阳; 压气储能内衬洞室高分子密封层的气密与力学特性 , 岩石力学与工程学报, 2018, (12): 2685-2696. (期刊论文)

    33. Zhou, Shuwei; Xia, Caichu*; Zhao, Haibin; Mei, Songhua; Zhou, Yu; Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature, Acta Geophysica, 2017, 65(5): 893-906. (期刊论文)

    34. Zhou, Shuwei; Xia, Caichu*; Zhao, Haibin; Mei, Songhua; Zhou, Yu; Numerical simulation for the coupled thermo-mechanical performance of a lined rock cavern for underground compressed air energy storage , Journal of Geophysics and Engineering, 2017, 14(6): 1382-1398. (期刊论文)

    35. 周瑜; 夏才初*; 赵海斌; 王先军; 梅松华; 周舒威; 压气储能内衬洞室的空气泄漏率及围岩力学响应估算方法, 岩石力学与工程学报, 2017, 36(2): 297-309. (期刊论文)

    36. Zhang, Guozhu*; Xia, Caichu; Zhao, Xu; Zhou, Shuwei; Effect of ventilation on the thermal performance of tunnel lining GHEs , Applied Thermal Engineering, 2016, 93: 416-424. (期刊论文)

    37. 夏才初*; 赵海斌; 梅松华; 周舒威; 张平阳; 周瑜; 埋深对压气储能内衬洞室

    稳定性影响的定量分析 , 绍兴文理学院学报(自然科学), 2016, (03): 1-7. (期刊论文)

    38. Xia, Caichu; Zhou, Shuwei*; Zhang, Pingyang; Hu, Yongsheng; Zhou, Yu; Strength criterion for rocks subjected to cyclic stress and temperature variations , Journal of Geophysics and Engineering, 2015, 12(5): 753-763.

    39. 张平阳; 夏才初*; 周舒威; 周瑜; 胡永生; 循环加-卸载岩石本构模型研究 ,岩土力学, 2015, (12): 3354-3359. (期刊论文)

    40. 周舒威; 夏才初*; 葛金科; 王双; 张平阳; 粘土中超大直径泥水平衡顶管被动极限支护压力计算方法 , 现代隧道技术, 2015, (03): 127-136. (期刊论文)

    41. 夏才初; 周舒威*; 胡永生; 张平阳; 周瑜; 循环单轴应力和循环温度作用下玄武岩力学性质初探, 岩土工程学报, 2015, (06): 1016-1024. (期刊论文)

    42. Xia, Caichu; Zhou, Yu*; Zhou, Shuwei; Zhang, Pingyang; Wang, Fei; A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns, RENEWABLE ENERGY, 2015,74: 718-726. (期刊论文)

    43. Zhou, Shuwei; Zeng, Yi*; Yang, Zhihao; Xia, Caichu; Qian, Xin; Failure mode of deeply inclined rock mass around an extra-large section tunnel , Electronic Journal of Geotechnical Engineering, 2015, 20(25): 12647-12661. (期刊论文)

    44. Zhou, Shuwei*; Xia, Caichu; Huang, Man; Long-term stability of rock pillars in the Longyou Ancient Grottoes: Sonic wave detection and numerical investigation, International Symposium on Scientific Problems and Long-Term Preservation of Large-scale Ancient Underground Engineering, Longyou, 2015-10-23至2015-10-26. (会议论文)

    45. 周舒威; 夏才初*; 张平阳; 周瑜; 地下压气储能圆形内衬洞室内压和温度引起应力计算, 岩土工程学报, 2014, 36(11): 2025-2035. (期刊论文)

    46. 夏才初; 张平阳; 周舒威; 周瑜; 王蕊; 大规模压气储能洞室稳定性和洞周应变分析 , 岩土力学, 2014, (05): 1391-1398. (期刊论文)

    47. Xia, Caichu*; Zhou, Shuwei; Du, Shigui; Song, Yinglong; Particle flow modeling for direct shear behavior of rough joints, 3rd International Symposium on Geomechanics from Micro to Macro, Cambridge, 2014-9-1至2014-9-3. (会议论文)

    48. 周舒威; 夏才初*; 葛金科; 王双; 张平阳; 黏土中超大直径顶管开挖面主动极限支护压力计算方法, 岩土工程学报, 2013, (11): 2060-2067. (期刊论文)

    49. Cai, R., Jin, Y., Djafari-Rouhani, B., Zhou, S., Chen, P., Rabczuk, T., ... & Zhuang, X. (2024). Attenuation of Rayleigh and pseudo surface waves in saturated soil by seismic metamaterials. Computers and Geotechnics, 165, 105854.

    50. Chen F, Zhou S, Zhuang X, et al. Phase-Field Modeling of a Single Horizontal Fluid-Driven Fracture Propagation in Spatially Variable Rock Mass[J]. International Journal of Computational Methods, 2022, 19(08): 2142003.

    51. Cao S, Xia C, Zhou S, et al. Unified strength-based elastoplastic solution for frost heaving force of cold-region tunnels considering dual non-uniform frost heaving of surrounding rock[J]. Cold Regions Science and Technology, 2023: 104054.

    52. Lin, Z., Xia, C., Du, S., & Zhou, S. (2023). Numerical investigation of the temperature field and frost damages of a frost-penetration tunnel considering turbulent convection heat transfer. Tunnelling and Underground Space Technology, 131, 104777.







    授权专利

    [1]一种压气储能与含热水地层地热开采耦合系统[P]. 浙江省:CN114046230B,2023-07-21.

    [2]一种压气储能与增强型地热开采耦合系统[P]. 浙江省:CN114016986B,2023-06-27.

    [3]一种常压式压气储能与采盐采热耦合系统[P]. 浙江省:CN114017116B,2023-05-23.

    [4]高寒隧道竖井空气换热系统[P]. 新疆维吾尔自治区:CN115059467A,2022-09-16.

    [5]一种压气储能与含热水地层地热开采耦合系统[P]. 浙江省:CN114046230A,2022-02-15.

    [6]一种压气储能与增强型地热开采耦合系统[P]. 浙江省:CN114016986A,2022-02-08.

    [7]一种常压式压气储能与采盐采热耦合系统[P]. 浙江省:CN114017116A,2022-02-08.

    [8]一种湖泊底下人工开挖地下洞室的天然水封压气储能系统[P]. 浙江省:CN113882900A,2022-01-04.

    [9]一种测试拉伸状态密封材料高压气体渗透性的装置及应用[P]. 上海市:CN113533166A,2021-10-22.

    [10]适用于陡倾层状岩体的大断面隧道支护体系施工方法[P]. 上海市:CN105065032B,2017-10-17.

    [11]适用于陡倾层状岩体的大断面隧道支护体系[P]. 上海:CN204827464U,2015-12-02.

    [12]适用于陡倾层状岩体的大断面隧道支护体系施工方法[P]. 上海:CN105065032A,2015-11-18.


    其他成果

    团体标准

        1. 中国岩石力学与工程学会团体标准T/CSRME008-2021,隧道地热能利用技术规程,2021,参编

最后更新时间:--
Copyright © 2020 civileng.tongji.edu.cn 同济大学土木工程学院 All rights reserved.
地址:上海市四平路1239号同济大学土木工程学院    
邮编:200092