林峰

职称:教授

学位:博士学位

国际期刊

[1] Xing-Ju Yang, Feng Lin, Xiang-Lin Gu. Experimental studies on improving progressive collapse resistance of RC beam–column assemblies using kinked steel plates[J]. Egineering Structures, 2023, 295: 116842.

[2] Yilin Lu, Luyang Jiang, Feng Lin. Seismic performance of precast concrete shear wall using grouted sleeve connections for section steels reinforced at wall ends[J]. Structures, 2023, 57(11):105068.

[3] Yang X-J, Lin F. Experimental and analytical studies on tensile behavior of kinked steel plates[J]. Journal of Constructional Steel Research. 2023, 204(5), 107874.

[4] Yang X-J, Lin F and Gu X-L. Simulation and Analysis on Improving Progressive Collapse Resistance of RC Assemblies by Embedding Locally Debonded Rebars near Beam-ends. Structures, 2022, 40(6):498-512

[5] Wang Y, Zhang B, Gu X-L, Lin f. Experimental and numerical investigation on progressive collapse resistance of RC frame structures considering transverse beam and slab effects. Journal of Building Engineering, 2022, 47(4): 103908

[6] Qian H-Y, Guo J-C, Yang X-M, Lin F. Seismic rehabilitation of gravity load-designed interior RC beam-column joints using ECC-infilled steel cylinder shell. Structures, 2021, 34(12): 1212-1228

[7] Qiu L, Lin F, Wu K-C, Gu X-L. Progressive collapse resistance of RC T-beam cable subassemblages under a middle-column-removal scenario. Journal of Building Engineering, 2021, 42(10):102814

[8] Yang X-J, Lin F, Gu X-L. Experimental study on a novel method to improve progressive collapse resistance of RC frames using locally debonded rebars. Journal of Building Engineering, 2021, 41(9): 102428

[9] Lin F, Zhao P. Behavior of Grouted Sleeve Splice for Steel Profile under Tensile Loadings. Materials, 2020, 13(9), 2037. 

[10] Qiu F, Lin F and Wu K C. Improving progressive collapse resistance of RC beam-column subassemblages using external steel cables. Journal of Performance of Constructed Facilities, 2020, 34(1): 04019079. 

[11] Hong L, Gu X-L, Lin F, et al. Effects of Coarse Aggregate Form, Angularity, and Surface Texture on Concrete Mechanical Performance. Journal of Materials in Civil Engineering, 2019, 31(10): 04019226.

[12] Lin F and Guo J C. Shear transfer of concrete strengthened using bolted steel plates. Construction and Building Materials, 2019, 212:109-120.  

[13] Lin F and Jiang W M. Design-oriented acceleration response spectrum for ground vibrations caused by collapse of large–scale cooling towers in NPPs. Nuclear Engineering and Technology, 2018(50): 1402-1411. 

[14] Lin F and Hua J Y. Shear Transfer of Concrete Strengthened with Externally Bonded CFRP Strips Inclined to Shear Plane. Construction and Building Materials, 2018, 179:379–389. 

[15] Lin F, Qiu L and Pan Y F Progressive Failure Analysis for Design and Construction of Suspended Cabins. Structural Engineering International, 2018(1): 81-84. 

[16] Lin F, Zhong Q H. Mitigation of Ground Vibration due to Collapse of a Large-Scale Cooling Tower with Novel Application of Materials as Cushions. Shock and Vibration, Volume 2017 (2017), Article ID 6809246, 14 pages. 

[17] Yu Q Q, Gu X L, Li Y, Lin F. Collapse Mechanism of Reinforced Concrete Super large Cooling Towers Subjected to Strong Winds [J]. Journal of Performance of Constructed Facilities, ASCE, 2017, DOI: 10.1061/(ASCE)CF.1943-5509.0001096.

[18] Lin F, Tang H. Nuclear containment structure subjected to commercial aircraft crash and subsequent vibrations and fire. Nuclear Engineering and Design. 2017, 322(10): 68–80.  

[19] Lin F, Zhang Y. An impulse-based model for impact between two concrete blocks [J]. International Journal of Impact Engineering, 2017, 107:96-107. 

[20] Lin F, Li H Z. Safety Analysis of Nuclear Containment Vessels Subjected to Strong Earthquakes and Subsequent Tsunamis. Nuclear Engineering and Technology, 2017, 49:1079-1089.  

[21] Lin F, Sun W B. Experimental and Numerical Studies on Steel-Encased Overlapping Column Transfer Assemblies. Journal of Asian Architecture and Building Engineering, 2017, 16(2): 371-378.

[22] Lin F, Hua J Y, and Dong Y. Shear Transfer Mechanism of Concrete Strengthened with External CFRP Strips. Journal of Composites for Construction, 2017, 21(2): 04016089.

[23] Lin F, Yang X M, Li K Y, Gu X L and Li X. Failure of wall–slab joint in unreinforced masonry building. Advances in Structural Engineering, 2017, 20(5): 759–771.

[24] Lin F and Wu X B. Effect of sleeve length on deformation properties of grouted splices. GRAĐEVINAR, 2017, 69(7):531-540.

[25] Xiang-Lin Gu; Qian-Qian Yu; Yi Li; Feng Lin. Collapse Process Analysis of Reinforced Concrete Super-Large Cooling Towers Induced by Failure of Columns. Journal of Performance of Constructed Facilities (ASCE), 2017, 31(5): 04017037.

[26] Lin F, Dong Y, Kuang X X, Lu L. High Strain Rate Behavior in Tension of Reinforcing Steels HPB235, HRB335, HRB400 and HRB500. Materials, 2016, 9(12), 1013.

[27] Lin F, Zhong Q H, Zhang Z. Flexural behaviour of RC beams reinforced with compressive steel bars and two-piece enclosed stirrups. Construction and Building Materials, 2016, 126:55-65.

[28] Lin F, Lu H X, Dong Y. Component model for shear transfer in reinforced concrete. Magazine of Concrete Research, 2016, 68(15): 755–767.

[29] Lin F, Wu X B. Mechanical performance and stress-strain relationships for grouted splices under tensile and cyclic loadings. International Journal of Concrete Structures and Materials, 2016, 10 (4):435–450.

[30] Yu Q Q, Gu X L, Li Y, Lin F. Collapse-resistant performance of super-large cooling towers subjected to seismic actions. Engineering Structures, 2016(108): 77-89.

[31] Lin F, Ji H K, Gu X L, Li Y, Wang M R, Lin T. NPP planning based on analysis of ground vibration caused by collapse of large-scale cooling towers. Nuclear Engineering and Design, 2015, 295(12):27–39.

[32] Lin F, Ji H K, Li Y N, Zuo Z X, Gu X L, Li Y. Prediction of Ground Motion due to the Collapse of a Large-Scale Cooling Tower under Strong Earthquakes. Soil Dynamics and Earthquake Engineering, 2014(65): 43-54.

[33] Hong L, Gu X L, Lin F. Influence of Aggregate Surface Roughness on Mechanical Properties of Interface and Concrete. Construction and Building Materials, 2014(65): 338-349.

[34] Li Y, Lin F, Gu X L, Lu X Q. Numerical Research of a Super-Large Cooling Tower Subjected to Accidental Loads. Nuclear Engineering and Design, 2014(269): 184-192.

[35] Gu X L, Wang X L, Yin X J, Lin F, Hou J. Collapse Simulation of Reinforced Concrete Moment Frames Considering Impact Actions Among Blocks. Engineering Structures. 2014(65): 30-41.

[36] Gu X L, Jia J Y, Wang Z L, Hong L, Lin F. Determination of Mechanical Parameters for Elements in Meso-Mechanical Models of Concrete. Frontiers of Structural and Civil Engineering, 2013, 7(4): 391-401

[37] Gu X L, Hong L, Wang Z L, Lin F. A Modified Rigid-Body-Spring Concrete Model for Prediction of Initial Defects and Aggregates Distribution Effect on Behavior of Concrete. Computational Materials Science, 2013(77): 355-365.

[38] Gu X L, Hong L, Wang Z L, Lin F. Experimental Study and Application of Mechanical Properties for the Interface between Cobblestone Aggregate and Mortar in Concrete. Construction and Building Materials,2013(46):156-166.

[39] Lin F, Li Y, Gu X L, Zhao X Y, Tang D S. Prediction of ground vibration due to the collapse of a 235 m high cooling tower under accidental loads. Nuclear Engineering and Design, 2013(258):89-101.

[40] Lin F, Song X B, Gu X L, Peng B, Yang L P. Cracking analysis of massive concrete walls with cracking reduction techniques. Construction and Building Materials, 2012, 31:12-21.

[41] Lin F, Hong L, Gu X L, Wang X L. Mechanical behaviour of cast in situ reinforced concrete slabs with control joints. Construction and Building Materials, 2012, 28(1):395-404.

[42] Gu, X L, Song, X B, Lin, F. Cracking behaviour of cast in situ reinforced concrete slabs with control joints. Construction and Building Materials, 2011, 25(3): 1398-1406.

[43] Wang Z L, Lin F, Gu X L. Numerical Simulation of Failure Process of Concrete Under Compression Based on Mesoscopic Discrete Element Model. Tsinghua Science and Technology, 2008, 13(s1): 19-25.

 

中文期刊

[1] 邱璐, 林峰. RC框架防连续倒塌设计的多尺度建模方法[J]. 结构工程师, 录用.

[2] 徐哲,廖承帅,林峰. 地震下建筑倒塌及城市次生灾害链分析方法研究[J]. 防灾减灾工程学报,2023,网络出版, DOI:10.13409/j.cnki.jdpme.20221105002.

[3] 杨兴据,林峰,顾祥林. 增配起波钢板的RC梁抗震及抗连续倒塌性能[J]. 湖南大学学报(自然科学版),2023, 50(3): 13-22.

[4] 钟子杨,林峰. 局部超载下地下车库混凝土板柱结构连续破坏分析[J]. 建筑结构(增刊), 2022, 52(S2):910-914.

[5] 刘传平, 吴邑涛, 杨兴据, 邱璐, 林峰. 基于多尺度建模的高铁站雨棚结构抗连续倒塌分析[J]. 建筑科学与工程学报. 2022,39(03):92-100.

[6] 陈子涵, 徐哲, 林峰. 超载下板柱结构和梁板结构极限承载力比较[J]. 建筑结构,2022, 52(S1):732-738.

[7] 许笑冰,邱璐,宋红召,刘传平,林峰. 混凝土联方网壳结构抗连续倒塌设计[J]. 建筑结构,2022, (录用)

[8]  任旭,林子昂,林峰. 地震下混凝土框架结构倒塌瓦砾分布研究. 建筑科学,2020,11(S):243-249.

[9] 林子昂, 林峰 .借助云计算的脱轨列车冲击作用下型钢混凝土柱失效分析. 防护工程,2019,41(05):41-48.

[10] 赵鹏, 林峰. 单调拉伸下型钢套筒浆锚连接受力性能试验研究. 结构工程师,2019, 35(2):171-177.

[11] 林峰,张智,王庆. 组合封闭箍筋混凝土梁受扭性能试验研究. 建筑结构, 2018, 48(18): 64-67,63.

[12] 姜文明,林峰,季立炯. 受爆结构“损伤标识”安全性评估方法的两个关键问题. 结构工程师,2017, 33(1):43-49.

[13] 程亮,邓碧鹰,林峰. Venlo型温室结构设计软件的开发与应用. 农业工程技术(温室园艺), 2017, 652(2):38-41.

[14] 林峰,花佳耀,董羽. CFRP加固混凝土直剪承载力提高机理. 2016,结构工程师,32(5): 151-158.

[15] 刘敏,陈兵,林峰,闫辉峰,顾祥林.大型冷却塔倒塌致地面振动影响因素.振动与冲击,2016, 35 (10): 126-132.

[16] 林峰,唐海,王立. 基于“损坏标识”的受爆结构安全性评估方法. 结构工程师, 2015,31(5):24-30.

[17] 林峰,黎艳翔,董羽. CFRP加固钢筋混凝土直剪承载力试验. 建筑科学与工程学报,2015,32(06):43-49.

[18] 华晶晶, 徐荣彬, 林峰, 顾祥林. 核电厂区域防恐规划综述. 核安全, 2014, 44(1): 14-19.

[19] 林峰,孙文斌,赵鹏飞. 内置型钢搭接柱转换结构试验研究与有限元分析. 建筑结构, 2014,44(15):45-50.

[20] 林峰,欧智星,卢海霞. 截面预裂的RC构件直剪与斜剪承载力比较. 建筑结构,2014, 44(19):75-80,91.

[21] 林峰,董羽,顾祥林. 高强度建筑钢筋HRB500的动力本构模型. 建筑材料学报,2014, (4):592-597.

[22] 林峰, 张羽, 张智, 韦恒. 组合封闭式箍筋双筋混凝土梁受弯性能试验研究. 结构工程师, 2014, 30(6): 139-144.

[23] 王英, 顾祥林, 林峰. 考虑压拱效应的钢筋混凝土双跨梁竖向承载力分析. 建筑结构学报, 2013, 34(4): 32-42.

[24] 卢海霞, 林峰, 李彤煜. 高强钢筋和剪跨比对混凝土构件直剪性能的影响. 结构工程师, 2013, 29(2): 146-152.

[25] 吴小宝,林峰,王涛.龄期和钢筋种类对钢筋套筒灌浆连接受力性能影响的试验研究.建筑结构,2013,43(14):77-82.

[26]顾祥林, 黄庆华, 汪小林, 林峰, 彭斌. 地震中钢筋混凝土框架结构倒塌反应的试验研究与数值仿真[J]. 土木工程学报, 2012, 45(9): 37-45.

[27] 蔡茂,顾祥林,华晶晶,林峰. 考虑剪切作用的钢筋混凝土柱地震反应分析. 建筑结构学报, 2011, 32(11):97-108.

[28] 王卓琳,顾祥林,林峰. 水泥砂浆复合受力破坏准则的试验研究, 建筑材料学报, 2011, 14(4): 437-442.

[29] 顾祥林, 蔡茂, 林峰. 地震作用下钢筋混凝土柱受力性能研究. 工程力学, 2010, 27(11): 160-165,190.

[30] 顾祥林, 印小晶, 林峰, 王英. 建筑结构倒塌过程模拟与防倒塌设计. 建筑结构学报, 2010, 31 (6):179-187.

[31] 王英, 林峰, 顾祥林. 爆炸荷载作用下材料强度设计值的确定方法. 建筑结构学报,2010, 31(S2):220-225.

[32] 林峰, 顾祥林, 肖炳辉。硬度法检测历史建筑中钢筋的强度. 结构工程师, 2010, 26(1):108-112.

[33] 张坚,陈涛,林峰,李华. 重庆大剧院型钢混凝土悬挑构件有限元数值分析. 工业建筑, 2009(增刊), 39(437):608-612.

[34] 王英, 林峰, 顾祥林. 结构抗连续倒塌设计方法评述. 结构工程师, 2009, 25(5): 142-148.

[35] 赵新源, 林峰, 顾祥林, 王英. 局部爆炸作用下混凝土框架结构抗连续倒塌设计. 结构工程师, 2009, 25(6):12-18.

[36] 林峰, 匡昕昕, 顾祥林. 混凝土动力本构模型及损伤延迟指标的参数研究. 振动与冲击, 2008, 27(3):131-135.

[37] 林峰, 顾祥林, 匡昕昕, 印小晶. 高应变率下建筑钢筋的本构模型. 建筑材料学报, 2008, 11(1):14-20.

[38] 林峰, Stangenberg F, 顾祥林. 考虑加载历史的约束混凝土动力本构模型. 同济大学学报(自然科学版), 2008, 36(4): 432-437.

[39] 侯健, 顾祥林, 林峰. 混凝土块体碰撞中的动能损耗. 同济大学学报(自然科学版), 2008, 36(7): 880-884.

[40] 林峰, 顾祥林. 我国与几种外国规范的冲切计算比较. 结构工程师, 2007, 23(2): 14-17,25.

[34] 沈冯强,林峰.建筑结构动力分析有限元模型.合肥工业大学学报(自然科学版), 2002,24(1):64-70.

 

国际会议(略)


最后更新时间:--
Copyright © 2020 civileng.tongji.edu.cn 同济大学土木工程学院 All rights reserved.
地址:上海市四平路1239号同济大学土木工程学院    
邮编:200092