林峰

职称:教授

学位:博士学位

    研究方向

    结构倒塌,混凝土结构动力学,装配式混凝土结构


    研究项目

        

    • 多灾害及其耦合作用下的城市工程系统韧性评估理论及方法研究,国家重点研发计划项目,2023 年 01 月至 2026年 12月,参加人 

    • 高铁站房大跨度空心楼盖结构体系关键技术研究,2022年9月至2023年12月,项目负责人  

    • 混凝土框架-钢索结构抗连续倒塌机理与性能提升,2022年01月至 2025年 12月,国家自然科学基金面上项目52178150,项目负责人

    • 城市基础设施韧性提升与方法,2020年1月至2024年12月,国家自然科学基金重点项目,参加人

    • 某专门项目,2021年1月至2021年10月,参加人

    • 地下车库板柱结构设计关键技术研究,2019.10-2020.10,负责人

    • 某专门项目,2019年7月~2019年12月,负责人

    • 大型能源存储与发/变电站结构地震成灾机理与灾变控制,2018年01月至2020年12月,国家重点研发计划大型关键工程结构地震成灾机理与减隔震技术项目(课题编号:2017YFC1500704),参加人

    • 超大城市韧性的理论体系与提升技术,2017年7月至2019年6月,上海市科学技术委员会科研计划项目,子课题负责人

    • 强震下核电厂大型冷却塔倒塌灾害与控制,2016年1月~2019年12月. 国家自然科学基金面上项目(项目编号:51578399),项目负责人

    • 超大型冷却塔倒塌引起地面振动研究 系列研究   6家国内电力设计院  2009-2017  参加人/负责人

    • 某安全壳模型施工期和后续性能预测,2015年,苏州热工研究院有限公司,参加人

    • 变电站主变室建筑防爆的技术研究 2015年,国网上海电力设计有限公司  参加人

    • 荷载与环境因素耦合作用下核电站关键混凝土结构可靠性保障技术研究,2012年~2015年,国家高科技研究发展计划(863计划)

    出版论著

    国际期刊

    [1] Qian H Y, Liang G F, Lin F*. Vierendeel action in progressive collapse of three-storey RC structures under corner column removal scenario. Engineering Structures, accepted.

    [2] Yang X J, Jiang Y H, Lin F*. Experimental study on direct shear resistance of horizontal grouted joints in PC shear walls under compression and in-plane bending moment. Journal of Building Engineering, 2024, 90, 109419.

    [3] Xu Z, Lin F*, Gu X-L. Shaking table tests on inclined collapse mechanism of RC frame structures subjected to earthquakes. Journal of Building Engineering, 2024, 89, 109338.

    [4] Xing-Ju Yang, Feng Lin*, Xu Du, Lu Qiu. Collapse-resistant mechanism of RC beam-slab substructures using kinked steel plates under two-adjacent-edge-columns removal scenario. Engineering Failure Analysis, 2024, 156, 107810.

    [5] Xing-Ju Yang , Feng Lin*, Xiang-Lin Gu. Progressive collapse resistance of RC beam-slab substructure under two-adjacent-edge-columns removal scenario. Journal of Building Engineering, 2023, 80(12), 108115. 

    [6] Xing-Ju Yang, Feng Lin*, Xiang-Lin Gu. Experimental studies on improving progressive collapse resistance of RC beam–column assemblies using kinked steel plates[J]. Egineering Structures, 2023, 295: 116842.

    [7] Yilin Lu, Luyang Jiang, Feng Lin*. Seismic performance of precast concrete shear wall using grouted sleeve connections for section steels reinforced at wall ends[J]. Structures, 2023, 57(11):105068.

    [8] Yang X-J, Lin F*. Experimental and analytical studies on tensile behavior of kinked steel plates[J]. Journal of Constructional Steel Research. 2023, 204(5), 107874.

    [9] Yang X-J, Lin F* and Gu X-L. Simulation and Analysis on Improving Progressive Collapse Resistance of RC Assemblies by Embedding Locally Debonded Rebars near Beam-ends. Structures, 2022, 40(6):498-512

    [10] Wang Y, Zhang B, Gu X-L, Lin f. Experimental and numerical investigation on progressive collapse resistance of RC frame structures considering transverse beam and slab effects. Journal of Building Engineering, 2022, 47(4): 103908

    [11] Qian H-Y, Guo J-C, Yang X-M, Lin F. Seismic rehabilitation of gravity load-designed interior RC beam-column joints using ECC-infilled steel cylinder shell. Structures, 2021, 34(12): 1212-1228

    [12] Qiu L, Lin F*, Wu K-C, Gu X-L. Progressive collapse resistance of RC T-beam cable subassemblages under a middle-column-removal scenario. Journal of Building Engineering, 2021, 42(10):102814

    [13] Yang X-J, Lin F*, Gu X-L. Experimental study on a novel method to improve progressive collapse resistance of RC frames using locally debonded rebars. Journal of Building Engineering, 2021, 41(9): 102428

    [14] Lin F*, Zhao P. Behavior of Grouted Sleeve Splice for Steel Profile under Tensile Loadings. Materials, 2020, 13(9), 2037. 

    [15] Qiu F, Lin F* and Wu K C. Improving progressive collapse resistance of RC beam-column subassemblages using external steel cables. Journal of Performance of Constructed Facilities, 2020, 34(1): 04019079. 

    [16] Hong L, Gu X-L, Lin F, et al. Effects of Coarse Aggregate Form, Angularity, and Surface Texture on Concrete Mechanical Performance. Journal of Materials in Civil Engineering, 2019, 31(10): 04019226.

    [17] Lin F* and Guo J C. Shear transfer of concrete strengthened using bolted steel plates. Construction and Building Materials, 2019, 212:109-120.  

    [18] Lin F* and Jiang W M. Design-oriented acceleration response spectrum for ground vibrations caused by collapse of large–scale cooling towers in NPPs. Nuclear Engineering and Technology, 2018(50): 1402-1411. 

    [19] Lin F* and Hua J Y. Shear Transfer of Concrete Strengthened with Externally Bonded CFRP Strips Inclined to Shear Plane. Construction and Building Materials, 2018, 179:379–389. 

    [20] Lin F*, Qiu L and Pan Y F Progressive Failure Analysis for Design and Construction of Suspended Cabins. Structural Engineering International, 2018(1): 81-84. 

    [21] Lin F*, Zhong Q H. Mitigation of Ground Vibration due to Collapse of a Large-Scale Cooling Tower with Novel Application of Materials as Cushions. Shock and Vibration, Volume 2017 (2017), Article ID 6809246, 14 pages. 

    [22] Yu Q Q, Gu X L, Li Y, Lin F. Collapse Mechanism of Reinforced Concrete Super large Cooling Towers Subjected to Strong Winds [J]. Journal of Performance of Constructed Facilities, ASCE, 2017, DOI: 10.1061/(ASCE)CF.1943-5509.0001096.

    [23] Lin F, Tang H. Nuclear containment structure subjected to commercial aircraft crash and subsequent vibrations and fire. Nuclear Engineering and Design. 2017, 322(10): 68–80.  

    [24] Lin F, Zhang Y. An impulse-based model for impact between two concrete blocks [J]. International Journal of Impact Engineering, 2017, 107:96-107. 

    [25] Lin F, Li H Z. Safety Analysis of Nuclear Containment Vessels Subjected to Strong Earthquakes and Subsequent Tsunamis. Nuclear Engineering and Technology, 2017, 49:1079-1089.  

    [26] Lin F, Sun W B. Experimental and Numerical Studies on Steel-Encased Overlapping Column Transfer Assemblies. Journal of Asian Architecture and Building Engineering, 2017, 16(2): 371-378.

    [27] Lin F, Hua J Y, and Dong Y. Shear Transfer Mechanism of Concrete Strengthened with External CFRP Strips. Journal of Composites for Construction, 2017, 21(2): 04016089.

    [28] Lin F, Yang X M, Li K Y, Gu X L and Li X. Failure of wall–slab joint in unreinforced masonry building. Advances in Structural Engineering, 2017, 20(5): 759–771.

    [29] Lin F and Wu X B. Effect of sleeve length on deformation properties of grouted splices. GRAĐEVINAR, 2017, 69(7):531-540.

    [30] Xiang-Lin Gu; Qian-Qian Yu; Yi Li; Feng Lin. Collapse Process Analysis of Reinforced Concrete Super-Large Cooling Towers Induced by Failure of Columns. Journal of Performance of Constructed Facilities (ASCE), 2017, 31(5): 04017037.

    [31] Lin F, Dong Y, Kuang X X, Lu L. High Strain Rate Behavior in Tension of Reinforcing Steels HPB235, HRB335, HRB400 and HRB500. Materials, 2016, 9(12), 1013.

    [32] Lin F, Zhong Q H, Zhang Z. Flexural behaviour of RC beams reinforced with compressive steel bars and two-piece enclosed stirrups. Construction and Building Materials, 2016, 126:55-65.

    [33] Lin F, Lu H X, Dong Y. Component model for shear transfer in reinforced concrete. Magazine of Concrete Research, 2016, 68(15): 755–767.

    [34] Lin F, Wu X B. Mechanical performance and stress-strain relationships for grouted splices under tensile and cyclic loadings. International Journal of Concrete Structures and Materials, 2016, 10 (4):435–450.

    [35] Yu Q Q, Gu X L, Li Y, Lin F. Collapse-resistant performance of super-large cooling towers subjected to seismic actions. Engineering Structures, 2016(108): 77-89.

    [36] Lin F, Ji H K, Gu X L, Li Y, Wang M R, Lin T. NPP planning based on analysis of ground vibration caused by collapse of large-scale cooling towers. Nuclear Engineering and Design, 2015, 295(12):27–39.

    [37] Lin F, Ji H K, Li Y N, Zuo Z X, Gu X L, Li Y. Prediction of Ground Motion due to the Collapse of a Large-Scale Cooling Tower under Strong Earthquakes. Soil Dynamics and Earthquake Engineering, 2014(65): 43-54.

    [38] Hong L, Gu X L, Lin F. Influence of Aggregate Surface Roughness on Mechanical Properties of Interface and Concrete. Construction and Building Materials, 2014(65): 338-349.

    [39] Li Y, Lin F, Gu X L, Lu X Q. Numerical Research of a Super-Large Cooling Tower Subjected to Accidental Loads. Nuclear Engineering and Design, 2014(269): 184-192.

    [40] Gu X L, Wang X L, Yin X J, Lin F, Hou J. Collapse Simulation of Reinforced Concrete Moment Frames Considering Impact Actions Among Blocks. Engineering Structures. 2014(65): 30-41.

    [41] Gu X L, Jia J Y, Wang Z L, Hong L, Lin F. Determination of Mechanical Parameters for Elements in Meso-Mechanical Models of Concrete. Frontiers of Structural and Civil Engineering, 2013, 7(4): 391-401

    [42] Gu X L, Hong L, Wang Z L, Lin F. A Modified Rigid-Body-Spring Concrete Model for Prediction of Initial Defects and Aggregates Distribution Effect on Behavior of Concrete. Computational Materials Science, 2013(77): 355-365.

    [43] Gu X L, Hong L, Wang Z L, Lin F. Experimental Study and Application of Mechanical Properties for the Interface between Cobblestone Aggregate and Mortar in Concrete. Construction and Building Materials,2013(46):156-166.

    [44] Lin F, Li Y, Gu X L, Zhao X Y, Tang D S. Prediction of ground vibration due to the collapse of a 235 m high cooling tower under accidental loads. Nuclear Engineering and Design, 2013(258):89-101.

    [45] Lin F, Song X B, Gu X L, Peng B, Yang L P. Cracking analysis of massive concrete walls with cracking reduction techniques. Construction and Building Materials, 2012, 31:12-21.

    [46] Lin F, Hong L, Gu X L, Wang X L. Mechanical behaviour of cast in situ reinforced concrete slabs with control joints. Construction and Building Materials, 2012, 28(1):395-404.

    [47] Gu, X L, Song, X B, Lin, F. Cracking behaviour of cast in situ reinforced concrete slabs with control joints. Construction and Building Materials, 2011, 25(3): 1398-1406.

    [48] Wang Z L, Lin F, Gu X L. Numerical Simulation of Failure Process of Concrete Under Compression Based on Mesoscopic Discrete Element Model. Tsinghua Science and Technology, 2008, 13(s1): 19-25.

     

    中文期刊

    [1] 邱璐, 林峰. RC框架防连续倒塌设计的多尺度建模方法[J]. 结构工程师, 2023, 39(03):9-15..

    [2] 徐哲,廖承帅,林峰. 地震下建筑倒塌及城市次生灾害链分析方法研究[J]. 防灾减灾工程学报,2023,3:423-434..

    [3] 杨兴据,林峰,顾祥林. 增配起波钢板的RC梁抗震及抗连续倒塌性能[J]. 湖南大学学报(自然科学版),2023, 50(3): 13-22.

    [4] 钟子杨,林峰. 局部超载下地下车库混凝土板柱结构连续破坏分析[J]. 建筑结构(增刊), 2022, 52(S2):910-914.

    [5] 刘传平, 吴邑涛, 杨兴据, 邱璐, 林峰. 基于多尺度建模的高铁站雨棚结构抗连续倒塌分析[J]. 建筑科学与工程学报. 2022,39(03):92-100.

    [6] 陈子涵, 徐哲, 林峰. 超载下板柱结构和梁板结构极限承载力比较[J]. 建筑结构,2022, 52(S1):732-738.

    [7] 许笑冰,邱璐,宋红召,刘传平,林峰. 混凝土联方网壳结构抗连续倒塌设计[J]. 建筑结构,2022, (录用)

    [8]  任旭,林子昂,林峰. 地震下混凝土框架结构倒塌瓦砾分布研究. 建筑科学,2020,11(S):243-249.

    [9] 林子昂, 林峰 .借助云计算的脱轨列车冲击作用下型钢混凝土柱失效分析. 防护工程,2019,41(05):41-48.

    [10] 赵鹏, 林峰. 单调拉伸下型钢套筒浆锚连接受力性能试验研究. 结构工程师,2019, 35(2):171-177.

    [11] 林峰,张智,王庆. 组合封闭箍筋混凝土梁受扭性能试验研究. 建筑结构, 2018, 48(18): 64-67,63.

    [12] 姜文明,林峰,季立炯. 受爆结构“损伤标识”安全性评估方法的两个关键问题. 结构工程师,2017, 33(1):43-49.

    [13] 程亮,邓碧鹰,林峰. Venlo型温室结构设计软件的开发与应用. 农业工程技术(温室园艺), 2017, 652(2):38-41.

    [14] 林峰,花佳耀,董羽. CFRP加固混凝土直剪承载力提高机理. 2016,结构工程师,32(5): 151-158.

    [15] 刘敏,陈兵,林峰,闫辉峰,顾祥林.大型冷却塔倒塌致地面振动影响因素.振动与冲击,2016, 35 (10): 126-132.

    [16] 林峰,唐海,王立. 基于“损坏标识”的受爆结构安全性评估方法. 结构工程师, 2015,31(5):24-30.

    [17] 林峰,黎艳翔,董羽. CFRP加固钢筋混凝土直剪承载力试验. 建筑科学与工程学报,2015,32(06):43-49.

    [18] 华晶晶, 徐荣彬, 林峰, 顾祥林. 核电厂区域防恐规划综述. 核安全, 2014, 44(1): 14-19.

    [19] 林峰,孙文斌,赵鹏飞. 内置型钢搭接柱转换结构试验研究与有限元分析. 建筑结构, 2014,44(15):45-50.

    [20] 林峰,欧智星,卢海霞. 截面预裂的RC构件直剪与斜剪承载力比较. 建筑结构,2014, 44(19):75-80,91.

    [21] 林峰,董羽,顾祥林. 高强度建筑钢筋HRB500的动力本构模型. 建筑材料学报,2014, (4):592-597.

    [22] 林峰, 张羽, 张智, 韦恒. 组合封闭式箍筋双筋混凝土梁受弯性能试验研究. 结构工程师, 2014, 30(6): 139-144.

    [23] 王英, 顾祥林, 林峰. 考虑压拱效应的钢筋混凝土双跨梁竖向承载力分析. 建筑结构学报, 2013, 34(4): 32-42.

    [24] 卢海霞, 林峰, 李彤煜. 高强钢筋和剪跨比对混凝土构件直剪性能的影响. 结构工程师, 2013, 29(2): 146-152.

    [25] 吴小宝,林峰,王涛.龄期和钢筋种类对钢筋套筒灌浆连接受力性能影响的试验研究.建筑结构,2013,43(14):77-82.

    [26]顾祥林, 黄庆华, 汪小林, 林峰, 彭斌. 地震中钢筋混凝土框架结构倒塌反应的试验研究与数值仿真[J]. 土木工程学报, 2012, 45(9): 37-45.

    [27] 蔡茂,顾祥林,华晶晶,林峰. 考虑剪切作用的钢筋混凝土柱地震反应分析. 建筑结构学报, 2011, 32(11):97-108.

    [28] 王卓琳,顾祥林,林峰. 水泥砂浆复合受力破坏准则的试验研究, 建筑材料学报, 2011, 14(4): 437-442.

    [29] 顾祥林, 蔡茂, 林峰. 地震作用下钢筋混凝土柱受力性能研究. 工程力学, 2010, 27(11): 160-165,190.

    [30] 顾祥林, 印小晶, 林峰, 王英. 建筑结构倒塌过程模拟与防倒塌设计. 建筑结构学报, 2010, 31 (6):179-187.

    [31] 王英, 林峰, 顾祥林. 爆炸荷载作用下材料强度设计值的确定方法. 建筑结构学报,2010, 31(S2):220-225.

    [32] 林峰, 顾祥林, 肖炳辉。硬度法检测历史建筑中钢筋的强度. 结构工程师, 2010, 26(1):108-112.

    [33] 张坚,陈涛,林峰,李华. 重庆大剧院型钢混凝土悬挑构件有限元数值分析. 工业建筑, 2009(增刊), 39(437):608-612.

    [34] 王英, 林峰, 顾祥林. 结构抗连续倒塌设计方法评述. 结构工程师, 2009, 25(5): 142-148.

    [35] 赵新源, 林峰, 顾祥林, 王英. 局部爆炸作用下混凝土框架结构抗连续倒塌设计. 结构工程师, 2009, 25(6):12-18.

    [36] 林峰, 匡昕昕, 顾祥林. 混凝土动力本构模型及损伤延迟指标的参数研究. 振动与冲击, 2008, 27(3):131-135.

    [37] 林峰, 顾祥林, 匡昕昕, 印小晶. 高应变率下建筑钢筋的本构模型. 建筑材料学报, 2008, 11(1):14-20.

    [38] 林峰, Stangenberg F, 顾祥林. 考虑加载历史的约束混凝土动力本构模型. 同济大学学报(自然科学版), 2008, 36(4): 432-437.

    [39] 侯健, 顾祥林, 林峰. 混凝土块体碰撞中的动能损耗. 同济大学学报(自然科学版), 2008, 36(7): 880-884.

    [40] 林峰, 顾祥林. 我国与几种外国规范的冲切计算比较. 结构工程师, 2007, 23(2): 14-17,25.

    [34] 沈冯强,林峰.建筑结构动力分析有限元模型.合肥工业大学学报(自然科学版), 2002,24(1):64-70.

     

    国际会议(略)


    授权专利

    (1)   杨兴据,徐哲,林峰,顾祥林. 一种结构抗连续倒塌能力设计方法及极限承载力计算方法,发明专利. 专利号:ZL 202011355848.8

    (2)   杨兴据,林峰,顾祥林. 一种基于定向滑动支座的连续性倒塌动力试验装置,发明专利. 申请号201911149535.4,申请日:2019年11月21日

    (3)   杨兴据,贾良玖,林峰. 纵向变壁厚的钢管套筒,发明专利. 申请号 CN201811623419.7,申请日:2018年12月28日

    (4)   林峰,花佳耀. 一种表面斜贴纤维复合材提高钢筋混凝土构件直剪承载力的方法. 发明专利,专利号:ZL 201610926613 7

    (5)   林峰, 邱璐. 一种在填充墙中采用橡胶砌块与混凝土框架柱连接装置. 实用新型,利号:ZL 201620648277X

    (6)   林峰, 赵鹏, 方正. 新型预制钢筋混凝土剪力墙. 发明专利,专利号:ZL 201710116546.7

    (7)   林峰, 赵鹏, 方正. 新型预制钢筋混凝土剪力墙. 实用新型,专利号:ZL 201720190683.0

    (8)   林峰, 钟奇亨,林子昂. 一种减弱大型构筑物倒塌引起地面振动的方法,发明专利. 专利号:ZL 201711184986.2

    (9)   林峰,吴开成. 一种可更换局部受压损坏区域的钢板混凝土剪力墙. 申请号201710126299.9,申请日:2017年1月

    (10) 林峰,邱璐. 角柱失效后防结构连续倒塌的连接单元及悬吊拉索装置. 实用新型,专利号:ZL 201620764140.0

    (11) 林峰,张逢伯. 一种防结构连续倒塌的体外抗力可调钢绞线网装置. 发明专利,专利号:ZL 201510091431.8

    (12)  林峰,张逢伯. 一种利用钢棍抗拉防结构连续倒塌的体外钢绞线网装置,发明专利,专利号:ZL 201510091836.1

    (13) 林峰, 董羽. 一种提高钢筋混凝土构件直剪承载力的方法, 发明专利,专利号:ZL 201410380171.1

    (14)  顾祥林,李毅,林峰. 超大型钢筋混凝土冷却塔缩尺试验模型的制作方法,发明专利,专利号:ZL 201410271036.3

    (15) 林峰,姜文明. 一种用于现场堆载试验的可折叠式水槽加载装置,实用新型,专利号:ZL 201520088313. 7

    (16) 林峰, 顾祥林, 崔玮. 试件受扭试验系统. 发明专利, 专利号:ZL 2009 1 0054344.x

    其他成果

    李俊江,徐哲,林峰,顾祥林.模拟结构倒塌过程的Unity软件. 登记号2020SR1621034,2020年10月15日


最后更新时间:--
Copyright © 2020 civileng.tongji.edu.cn 同济大学土木工程学院 All rights reserved.
地址:上海市四平路1239号同济大学土木工程学院    
邮编:200092