职称:教授
学位:博士
*,通讯作者 (http://scholar.google.com/citations?user=HF8ptPEAAAAJ;https://exaly.com/author/8668682/yong-tan/rankings;https://orcid.org/0000-0003-3107-5454)
Our researches contribute to geotechnical practice!
Chao, H., Tan, Y.*, and Su, Z. K. (2025). “Ground failure and soil erosion caused by bursting of buried water pipeline: experimental and numerical investigations. Engineering Failure Analysis, 167(Jan), 108965, 17 pages. https://doi.org/10.1016/j.engfailanal.2024.108965. (有压水管爆管造成地面塌陷与土体渗蚀破坏:物理模型试验与数值模拟研究)
Fan, D. D., Gong, D. L. J, Tan, Y.*, and Tang, Y. J. (2024). “Prediction of lateral wall deflections of excavations in water-rich sands by a modified multivariate-adaptive-regression-splines method.” Frontiers of Structural and Civil Engineering, https://doi.org/10.1007/s11709-024-1140-9. (应用“修正多元自适应样条回归方法”预测富水砂土深基坑挡墙侧向位移)
Tan, Y.* (2024). “Discussion of “Effects of Movement Induced by Ground Improvement on the Performance of an Excavation Support System in Underconsolidated Clay.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 150(12), 07024019, 4 pages. https://doi.org/10.1061/JGGEFK.GTENG-12622. (关于新加坡欠固结软黏土地层中基坑开挖前坑底软基加固对围护结构性能影响的讨论)
Liu, J. C., and Tan, Y.* (2024). “Responses of a short column-supported highrise tower to adjacent deep excavations in water-rich sandy strata and dynamic optimization of protection plans.” Frontiers of Structural and Civil Engineering, 19 pages. https://doi.org/10.1007/s11709-024-1110-2. (短桩筏基础高耸结构临近富水砂土深基坑时的力学响应及其保护方案动态优化研究)
Tan, Y., Lu, Y., and Wang, D. L. (2024). “Synchronous-cross zoned excavation of the oversized basement of Shanghai International Financial Centre by combination of bottom-up and top-down methods: Structural and geotechnical behaviors.” Tunnelling and Underground Space Technology, 153 (Nov.), 106023, 45 pages. https://doi.org/10.1016/j.tust.2024.106023. (顺-逆结合同步交叉分区开挖上海国金中心超大软土深基坑:地下围护结构与岩土行为分析)
Liu, J. C., Tan, Y.*, Chao, H., and Li, J. L. (2024). “Investigation on failure of deep excavations in erodible sandy strata triggered by heavy rainfall.” Engineering Failure Analysis, 164(October), 108733, 21 pages. https://doi.org/10.1016/j.engfailanal.2024.108733. (关于暴雨诱发砂土深基坑工程失效的调查研究)
Tan, Y.* (2024). Discussion of “Foundation Settlement and Tilt of Millennium Tower in San Francisco, California.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 150(10), 07024015, 3 pages. https://ascelibrary.org/doi/10.1061/JGGEFK.GTENG-12088. (ASCE已将本讨论稿开放获取,可点击链接免费下载该文)(基于原文所提供的信息材料,本文讨论了导致美国加州旧金山市千禧大楼长期复杂沉降、倾斜行为的可能原因:(1)在2009年初大楼东侧裙房MP基坑施工期间,为什么大楼倒向东北方向而不是正东MP基坑方向?此外,在这一期间大楼北侧无任何基坑施工,为什么大楼向北的倾斜值反而大于其向东的倾斜值?(2)在2009年5月 - 2011年4月期间,大楼周围并无任何施工活动,为什么大楼向西北方向缓慢倾斜?(3)在2011年4月 – 2012年4月大楼西南侧地铁基坑STC 3区开挖的时候,大楼向西南方向倾斜,但为什么随着2013年初大楼南侧地铁基坑STC 4区与大楼北侧SFE基坑同时开始施工,大楼由原先向西南方向倾斜快速转为向西北方向倾斜?(4)在2013-2014年大楼南侧地铁基坑STC 4区与北侧SFE基坑施工期间,为什么大楼向西的倾斜值大于其向北的倾斜值?而大楼西侧的SFP、SFT两个基坑要到2015才开始施工!(5)大楼西侧SFP基坑开挖深度仅为10.6米,而位于大楼与SFP基坑之间且靠近SFP基坑侧深达地面60米以下的地层仍然发生显著水平位移,为什么?此外,本文还讨论了千禧大楼桩基础及其周边群基坑围护结构的可能设计缺陷,如主楼桩基持力层为密实薄砂层而非穿过下卧老黏土层进入基岩、先施工主楼浅基坑而后施工东侧裙房深基坑、大楼南侧地铁基坑加固层深入基岩而其它三侧基坑围护结构与止水帷幕均未穿透含水层进入下卧不透水层)
Liu, J. C., Wang, Z. Y., Tan, Y.*, and Cao, Y. C. (2024). “Failure evolution and mechanism of ground collapse due to exfiltration of shallowly buried water pipeline.” Engineering Failure Analysis, 162(August), 108390, 21 pages. https://doi.org/10.1016/j.engfailanal.2024.108390. (浅埋水管外渗诱发地层塌陷演化及破坏机理)
Tan, Y.* (2024). “Discussion of “Numerical Study of the Effect of Ground Improvement on Basal Heave Stability for Deep Excavations in Normally Consolidated Clays.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 150(7), 07024005, 4 pages. https://doi.org/10.1061/JGGEFK.GTENG-12084. (本文主要讨论了以下问题:(1)基于极限地基承载力理念发展出来的软土基坑坑底抗隆起安全系数计算力学模型是否合理?(2)传统软土基坑坑底抗隆起安全系数计算力学模型中假定坑底隆起是由挡墙后土体绕墙趾以下向上流入坑内所造成,这是否符合客观事实?还是坑底隆起主要是由于基坑内部挖土卸载造成开挖面以下地层竖向回弹变形引起、小部分由挡墙向坑内侧移挤压坑内地层所造成?(3)软土基坑开挖过程周围地层真正的运到机制到底是什么样子?(4)基坑开挖卸载过程中挡墙侧向位移变形体积与挡墙后地面沉降槽体积之间的关系是什么?(5)为什么世界范围内软土基坑实例大数据统计分析均显示软土基坑力学行为与基于地基极限承载力理论发展起来的各种基坑坑底抗隆起力学模型所计算得到的设计安全系数值之间的关联并不明显?(6)在软土基坑坑底抗隆起失效过程中,挡墙后发生的显著竖向地层位移或沉陷是如传统模型假设的那样是导致事故的原因、还是实际上是基坑坑底抗隆起失效后的结果?(7)基于极限地基承载力理念发展出来的软土基坑坑底抗隆起计算力学模型所得到的设计安全系数是否真正具有工程实践意义?(8)对基坑坑底软土地基进行加固是工程实践中行之有效的技术手段,其工作原理是如现有力学模型所认定的那样通过增加土体自重增加抵抗坑外土体绕墙趾以下向上流入坑内并增加坑底土体与围护墙之间摩擦力实现减小坑底隆起、还是实际上是通过增加坑底地层回弹模量从而降低开挖卸载所引起的坑底地层回弹变形同时增加坑内土体水平抗力从而减少挡墙变形及踢脚破坏风险?)
Song, X. H., Tan, Y.*, and Lu, Y. (2024). “Microscopic analyses of the reinforcement mechanism of plant roots in different morphologies on the stability of soil slopes under heavy rainfall.” CATENA, 241(June), 108018, 15 pages. https://doi.org/10.1016/j.catena.2024.108018. (不同形态植物根系对暴雨条件下土坡稳定性加固机制的微观分析)
Song, X. H., Tan, Y.*. (2024). “Experimental study on the stability of vegetated earthen slopes under intense rainfall.” Soil and Tillage Research, 238(May), 106028, 14 pages. https://doi.org/10.1016/j.still.2024.106028. (强降雨条件下植被边坡稳定性物理模型试验研究)
Fan, D. D., Tan, Y.*, Tang, Y. J., and Wang, D. L. (2024). “Evaluation of dewatering‑induced hydraulic and ground responses of thick multi‑aquifer sandy strata without aquitards.” Environmental Earth Sciences 83(Jan.):3,23 pages. https://doi.org/10.1007/s12665-023-11315-1. (深厚砂性含水层中降水引发的水力与地层响应研究)
Liu, J. C., and Tan, Y.* (2024). “Hydraulic fracture failure during excavation of a working shaft for subway station: forensic diagnosis and postfailure rehabilitation.” Engineering Failure Analysis 155(Jan.), 107750,19 pages. https://doi.org/10.1016/j.engfailanal.2023.107750.(富水砂性地层中某地铁车站工作井基坑开挖过程中的水力劈裂破坏事故调查及事故后修复)
Liu, J. C., Tan, Y.*, and Liao, S. M. (2023). “Protection of a 193.5-m High Concrete Tube-Shaped TV Tower Close to Subway Excavations.” Journal of Performance of Constructed Facilities, ASCE, 37(5): 04023043, 14 pages. https://doi.org/10.1061/JPCFEV.CFENG-4456. (富水砂性地层中地铁换乘车站深基坑开挖施工对近邻短桩筏基础高耸混凝土圆筒结构物的影响及保护)
Tan, Y., Lu, Y., and Wang, D. L. (2023). “Interactive behaviors of four closely spaced mega excavations in soft clays: Case study on an excavation group in Shanghai, China.” Tunnelling and Underground Space Technology 138: 105186, 30 pages (supplementary materials - 14 pages). https://doi.org/10.1016/j.tust.2023.105186. (上海软土超大深基坑群相互影响行为、相互作用机理及时空关联效应研究)
Liu, J. C., and Tan, Y.* (2023). "Review of through-wall leaking incidents during excavation of the subway stations of Nantong metro line 1 in thick water-rich sandy strata." Tunnelling and Underground Space Technology 135: 105056, 18 pages. https://doi.org/10.1016/j.tust.2023.105056. (富水砂性地层中地铁车站深基坑地墙渗漏灾害种类及堵漏应对措施综述)
Tan, Y., Lu, Y., and Wang, D. L. (2023). “Catastrophic failure of Shanghai metro line 4 in July, 2003: postaccident rehabilitation.” Journal of Performance of Constructed Facilities, ASCE, 37(2): 04023006, 25 pages. https://doi.org/10.1061/JPCFEV.CFENG-4135.(上海地铁四号线事故后工程修复介绍)
Tan, Y., Lu, Y., and Wang, D. L. (2022). "Closure to "Catastrophic Failure of Shanghai Metro Line 4 in July, 2003: Occurrence, Emergency Response, and Disaster Relief" by Yong Tan, Ye Lu, and Dalong Wang." Journal of Performance of Constructed Facilities, ASCE, 36(2): 07021006, 5 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001704.(关于上海地铁四号线工程事故调查的讨论稿回复)
Jiang, W. Z., and Tan, Y.* (2022). “Overview on failures of urban underground infrastructures in complex geological conditions due to heavy rainfall in China during 1994-2018.” Sustainable Cities and Society, 76 (Jan.): 103509, 20 pages (supplementary materials - 77 pages) https://doi.org/10.1016/j.scs.2021.103509.(暴雨气候下复杂地质环境中中国城市地下工程灾害综述)
Tan, Y.*, Fan, D. D., and Lu, Y. (2022). “Statistical analyses on a database of deep excavations in Shanghai soft clays in China from 1995-2018.” Practice Periodical on Structural Design and Construction, ASCE, 27(1): 04021067, 18 pages (supplementary materials - 39 pages) https://doi.org/10.1061/(ASCE)SC.1943-5576.0000646.(1995-2018年期间上海软土深基坑工程大数据统计分析)
Song, X. H., and Tan, Y.* (2021). "Experimental investigation on the influences of rainfall patterns on instability of sandy slopes." Environmental Earth Sciences 80, Article number 803, 21 pages. https://doi.org/10.1007/s12665-021-10118-6.(关于暴雨雨型对砂质边坡稳定性影响的模型试验研究)
Tan, Y.*, and Long, Y. Y. (2021). “Review of cave-in failures of urban roadways in China: a database.” Journal of Performance of Constructed Facilities, ASCE, 35(6): 04021080, 20 pages (supplementary materials - 132 pages). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001658.(中国城市道路塌陷灾害事故数据库统计分析)
Jiang, W. Z., and Tan, Y.* (2021). “Heavy rainfall-related excavation failures in China during 1994 to 2018: an overview.” Engineering Failure Analysis, 129(Nov.), 105695, 15 pages (supplementary materials - 34 pages). https://doi.org/10.1016/j.engfailanal.2021.105695.(暴雨气候下中国城市深基坑工程灾害事故综述)
Song, X. H., Cui, S. W., Tan, Y.*, and Zhang, Y. F. (2021). “Influence of water pressure on deep subsea tunnel buried within sandy seabed.” Marine Georesources & Geotechnology, 16 pages. https://doi.org/10.1080/1064119X.2021.1961954.(水压对海底深埋隧道的影响研究)
Lu, Y., Tan, Y.*, Yang, B., and Chen, W. L. (2021). “Ground subsidence hazards due to crushing and removing large isolated boulder by tunneling.” Journal of Performance of Constructed Facilities, ASCE, 35(2): 04020149, 14 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001558.(盾构掘进破碎孤石诱发的地层塌陷研究)
Tan, Y., Lu, Y., and Wang, D. L. (2021). “Catastrophic failure of Shanghai metro line 4 in July, 2003: Occurrence, emergency response, and disaster relief.” Journal of Performance of Constructed Facilities, ASCE, 35(1): 04020125, 16 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001539.(上海地铁四号线工程事故原因调查)
Cui, S. W., Tan, Y.*, and Lu, Y. (2020). “Algorithm for generation of 3D polyhedrons for simulation of rock particles by DEM and its application to tunneling in boulder-soil matrix." Tunnelling and Underground Space Technology 106, 103588, 19 pages. https://doi.org/10.1016/j.tust.2020.103588.(不规则形状砾石颗粒三维离散元细观模拟算法及其模拟TBM在孤石地层中的掘进应用介绍)
Tan, Y., Jiang, W. Z., Rui, H. S., Lu, Y., and Wang, D. L. (2020). “Forensic geotechnical analyses on the 2009 building-overturning accident in Shanghai, China: beyond common recognitions." Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 146(7), 05020005, 26 pages (supplementary materials - 62 pages). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002264.(上海“楼倒倒”工程事故调查研究论文,点击链接可免费下载该论文正文-26页与文章末尾“详细计算分析说明”附件补充材料-62页)(迄今为止,关于2009年6月发生在上海市闵行区淀浦河畔莲花小区的楼倒倒事故原因仍然存在很大争议。已有的“楼房两侧过大土压力差超过桩基抗侧能力”、“车库基坑侧楼房桩基首先受剪或受弯破坏导致整栋楼房渐进性倒下”、“车库基坑开挖导致楼房下土体被掏空,同时堆土造成地基土向淀浦河方向滑动”、“楼房两侧土压力差与淀浦河水在地基土中的渗流耦合综合作用”、“PHC管桩存在质量缺陷”、“车库基坑降水导致淀浦河水倒灌基坑致灾”、“风吹倒”等观点是否符合事实、科学合理?到底是“桩断了、楼倒了”或“楼歪了、桩断了、楼倒了”?本次事件的真正事故原因到底是什么?此外,本次事件中下列重要现象也没有受到各方的重视并给出令人信服的解释:(1) 10米高堆土旁的7号楼突然倒下了,而7号楼边上的6号楼同样靠近10米高堆土却安然无恙,为什么?(2) 10米高堆土南侧33米长桩基的7号楼突然倒下了而堆土北侧条形浅基础的淀蒲河防汛墙却巍然不动,为什么?(3) 虽然10米高堆土北侧的防汛墙安然无恙,但在楼倒前一天中午10号、11号楼北侧6米高堆土北侧淀浦河防汛墙却发生了大规模破坏,为什么?(4)两处堆土场地的地基是否破坏、其破坏形式是什么?(5) 楼倒前长达5小时的强降雨在本次事件中扮演了什么样的角色?基于现场观察证据、极限平衡稳定性分析、理论计算、设计复核、和三维数值仿真模拟分析结果,本文对上述事故原因及相关现象进行了逐一解释与探讨)
Song, X. H., and Tan, Y.* (2020). “Experimental study on failure of temporary earthen slope triggered by intense rainfall.”Engineering Failure Analysis 116, 104718, 13 pages. https://doi.org/10.1016/j.engfailanal.2020.104718.(强降雨诱发临时土质边坡失稳破坏的模型试验研究)
Long, Y. Y., and Tan, Y.* (2020). “Soil arching due to leaking of tunnel buried in water-rich sand.” Tunnelling and Underground Space Technology 95, 103158, 18 pages. https://doi.org/10.1016/j.tust.2019.103158.(富水砂性地层中隧道渗漏情况下地层土拱效应研究)
Lu, Y., and Tan, Y.* (2019). “Overview of typical excavation failures in China.” Geotechnical Special Publication 313 (GSP 313), 315-332, 18 pages. https://doi.org/10.1061/9780784482155.033.(典型基坑工程灾害事故破坏形式总结)
Tan, Y., Wei, B., Lu, Y., and Yang, B. (2019). “Is basal reinforcement essential for long and narrow subway excavation bottoming out in Shanghai soft clay?” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 145(5), 05019002, 14 pages. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002028.(对于黏土深基坑,开挖施工前对坑底软弱土地层进行加固是否必要?)
Tan, Y., Lu, Y., and Wang, D. (2019). “Practical solutions for concurrent excavation of neighboring mega basements closely surrounded by utility tunnels in Shanghai Hongqiao CBD.” Practice Periodical on Structural Design and Construction, ASCE, 24(4), 05019005, 23 pages. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000437.(上海虹桥商务区近临综合管廊的超大基坑群同步开挖施工技术及环境保护)
Lu, Y., Tan, Y.*, and Lan, H. (2019). “Full-scale load testing of 75-90-m-long post-grouted drilled shafts in Suzhou stiff clay.” Journal of Testing and Evaluation, ASTM, 47(1): 284-309. https://doi.org/10.1520/JTE20170442.(苏州黏土地层中超长、大直径后注浆灌注桩现场足尺抗压与抗拔试验研究)
Lu, Y., Tan, Y.*, and Li, X. (2018). “Stability analyses on slopes of clay-rock mixtures using discrete element method.” Engineering Geology 244: 116-124. https://doi.org/10.1016/j.enggeo.2018.07.021.(基于离散元方法的碎石混黏土边坡稳定性分析)
Tan, Y., Lu, Y., Xu, C., and Wang, D. (2018). “Investigation on performance of a large circular pit-in-pit excavation in clay-gravel-cobble mixed strata.” Tunnelling and Underground Space Technology 79: 356-374. https://doi.org/10.1016/j.tust.2018.06.023.(碎石混黏土地层中大型坑中坑圆形深基坑变形与力学响应研究)
Tan, Y.*, Jiang, W., Luo, W., Lu, Y., and Xu, C. (2018). “Longitudinal sliding event during excavation of Feng-Qi Station of Hangzhou Metro Line 1: Postfailure investigation.” Journal of Performance of Constructed Facilities, ASCE, 32(4), 04018039, 27 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001181.(软土地层中狭长型地铁深基坑纵向滑坡事故调查研究)
Tan, Y., and Lu, Y. (2018). “Responses of shallowly buried pipelines to adjacent deep excavations in Shanghai soft ground.” Journal of Pipeline Systems Engineering and Practice, ASCE, 9(2), 05018002, 14 pages. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000310.(上海软土深基坑开挖对临近浅埋柔性管线的影响)
Tan, Y., Lu, Y., and Wang, D. (2018). “Deep excavation of the Gate of the Orient in Suzhou stiff clay: Composite earth retaining systems and dewatering plans.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 144(3), 05017009, 21 pages. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001837.(苏州“东方之门”黏土深大基坑开挖变形及深层承压水降水影响研究论文,点击链接可免费下载该论文正文与文章末尾附件补充材料)
Tan, Y.*, Zhu, H., Peng, F., Karlsrud, K., and Wei, B. (2017). “Characterization of semi-top-down excavation for subway station in Shanghai soft ground.” Tunnelling and Underground Space Technology 68: 244-261. https://doi.org/10.1016/j.tust.2017.05.028.(上海软土地区半逆作地铁深基坑变形行为研究)
Tan, Y., and Lu, Y. (2017). “Forensic diagnosis of a leaking accident during excavation.” Journal of Performance of Constructed Facilities, ASCE, 31(5), 04017061, 15 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001058.(上海深层承压水诱发深基坑地墙渗漏事故调查)
Lu, Y., Tan, Y.*, Li, X., and Liu, C. (2017). “Methodology for simulation of irregularly shaped gravel grains and its application to DEM modeling.” Journal of Computing in Civil Engineering, ASCE, 31(5), 04017023, 11 pages. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000676.(不规则形状碎石颗粒二维细观模拟算法及其在DEM数值模拟中的应用介绍)
Tan, Y.*, Wang, D., Lu, Y., and Fang, T. (2017). “Excavation of Middle Huai-Hai Road Station of Shanghai Metro Line 13: challenges, risks, countermeasures and performance assessment.” Practice Periodical on Structural Design and Construction, ASCE, 22(3), 05017003, 14 pages. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000320.(上海地铁13号线淮海中路站基坑开挖施工挑战、风险、应对措施及表现)
Tan, Y., and Lu, Y. (2017). “Why excavation of a small air shaft caused excessively large displacements: forensic investigation.” Journal of Performance of Constructed Facilities, ASCE, 31(2), 04016083, 20 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000947.(为什么小基坑开挖也可能会导致大变形工程事故?)
Tan, Y.*, Huang, R., Kang, Z., and Wei, B. (2016). “Covered semi-top-down excavation of subway station surrounded by closely spaced buildings in downtown Shanghai: building response.” Journal of Performance of Constructed Facilities, ASCE, 30(6), 04016040, 26 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000892.(浅基础与深基础建筑物在临近软土深基坑开挖过程中的力学响应分析)
Tan, Y.*, Li, X., Kang, Z., Liu, J., and Zhu, Y. (2015). “Zoned excavation of an oversized pit close to an existing metro line in stiff clay: case study.” Journal of Performance of Constructed Facilities, ASCE, 29(6), 04014158, 19 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000652.(硬黏土地层中超大深基坑分区施工对临近地铁隧道与地铁车站结构的影响调查研究)
Tan, Y.*, Wei, B., Zhou, X., and Diao, Y. (2015). “Lessons learned from construction of Shanghai metro stations: importance of quick excavation, prompt propping, timely casting and segmented construction.” Journal of Performance of Constructed Facilities, ASCE, 29(4), 04014096, 15 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000599.(上海软土地铁深基坑施工经验与教训 – 证“时空效应原理”对开挖变形控制的重要性)
Tan, Y.*, and Wang, D. (2015a). “Structural behaviors of large underground earth-retaining systems in Shanghai. I: unpropped circular diaphragm wall.” Journal of Performance of Constructed Facilities, ASCE, 29(2), 04014058, 14 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000521.(无支撑圆形地墙结构力学变形行为)
Tan, Y.*, and Wang, D. (2015b). “Structural behaviors of large underground earth-retaining systems in Shanghai. II: multipropped rectangular diaphragm wall.” Journal of Performance of Constructed Facilities, ASCE, 29(2), 04014059, 16 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000535.(多支撑矩形地墙结构力学变形行为)
Tan, Y.*, Wei, B., Diao, Y., and Zhou, X. (2014). “Spatial corner effects of long and narrow multipropped deep excavations in Shanghai soft clay.” Journal of Performance of Constructed Facilities, ASCE, 28(4), 04014015, 17 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000475.(上海软土地层中狭长型地铁深基坑空间角效应调查研究)
Tan, Y.*, Lin, G., Zhang, Y., and Li, X. (2015). “Closure to "Comprehensive Load Test on Prestressed Concrete Piles in Alluvial Clays and Marl in Savannah, Georgia" by Yong Tan and Guoming Lin.” Journal of Performance of Constructed Facilities, ASCE, 29(1), 07014002, 8 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000712.(关于乔治亚州萨瓦娜市冲积黏土与下卧泥灰土地层中预应力混凝土桩现场足尺测桩试验研究讨论的回复)
Tan, Y.*, and Lin, G. (2014). “Comprehensive load test on prestressed concrete piles in alluvial clay and marl in Savannah, Georgia.”Journal of Performance of Constructed Facilities, ASCE, 28(1): 178-190. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000305.(乔治亚州萨瓦娜市冲积黏土与下卧泥灰土地层中预应力混凝土桩现场足尺测桩试验研究)
Tan, Y.*, and Wang, D. (2013a). “Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. I: bottom-up construction of the central cylindrical shaft.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 139(11): 1875-1893. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000928.(中心岛法施工上海环球金融中心基坑I:顺作法施工中心塔楼无支撑圆形基坑)
Tan, Y.*, and Wang, D. (2013b). “Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. II: top-down construction of the peripheral rectangular pit.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 139(11): 1894-1910. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000929.(中心岛法施工上海环球金融中心基坑II:逆作法施工周边裙楼基坑)
Lu, Y., Tan, Y.*, and Lin, G. (2013). “Characterization of thick varved clayey silt deposits along the Delaware River by field and laboratory tests.” Environmental Earth Sciences, 69(6): 1845-1860. https://doi.org/10.1007/s12665-012-2020-5.(特拉华河沿岸分层黏质粉土“纹泥”地层的物理力学性质研究)
Tan, Y.*, and Lin, G. (2013). “Full-scale testing of open-ended steel pipe piles in thick varved clayey silt deposits along the Delaware River in New Jersey.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 139(3): 518-524. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000777.(新泽西州特拉华河沿岸分层黏质粉土“纹泥”地层中开口钢管桩足尺测桩试验研究)
Tan, Y.*, and Wei, B. (2012). “Performance of an overexcavated metro station and facilities nearby.” Journal of Performance of Constructed Facilities, ASCE,26(3): 241-254. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000231.
Lu, Y., and Tan, Y.* (2012). “Examination of loose saturated sands impacted by a heavy tamper.” Environmental Earth Sciences, 66(5): 1557-1567. https://doi.org/10.1007/s12665-011-1395-z.(松散饱和砂土的动力强夯加固效果研究)
Tan, Y.*, and Wei, B. (2012). “Observed behavior of a long and deep excavation constructed by cut-and-cover technique in Shanghai soft clay.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 138(1): 69-88. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000553.(上海软土地层中狭长型明挖法深基坑变形行为)
Tan, Y.*, and Lan, H. (2012). “Vibration effects attributable to driving of PHC pipe piles.” Journal of Performance of Constructed Facilities, ASCE, 26(5): 679-690. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000278.(PHC管桩动力沉桩振动响应研究)
Tan, Y.*, Lu, Y., Peng, F., and Liao, S. (2012). “Isolation of DDC impact to sheet pile walls by open trenches.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 138(1): 110-114. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000544.
Tan, Y.*, and Li, M. (2011). “Measured performance of a 26 m deep top-down excavation in downtown Shanghai.” Canadian Geotechnical Journal, 48(5): 704-719. https://doi.org/10.1139/t10-100.(上海中心城区逆作法软土深基坑变形行为)
Lu, Y., and Tan, Y.* (2011). “Mitigation of building responses due to DDC impact by soft and stiff wave barriers.” Journal of Vibration and Control, 17(2): 259-277. https://doi.org/10.1177/1077546309355297.
Tan, Y.*, Lu, Y., and Peng, F. L. (2010). “Semiempirical approach for estimation of DDC-induced deflections of sheet pile walls in peat.” Journal of Performance of Constructed Facilities, ASCE, 24(1): 87-95. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000059.(一种可估算夯击造成泥炭土地层中钢板桩侧向位移的半经验方法)
Tan, Y.*, and Lu, Y. (2009). “Parametric studies of DDC-induced deflections of sheet pile walls in soft soils.” Computers and Geotechnics 36: 902-910. https://doi.org/10.1016/j.compgeo.2009.01.004.
Tan, Y.*, and Lu, Y. (2008). “Compaction-induced earth pressures against a sheet pile wall in peat.” Transportation Research Record: Journal of the Transportation Research Board No.2045: 29-38. https://doi.org/10.3141/2045-04.(夯击作用下泥炭土地层中钢板桩侧向土压力研究)
Tan, Y.*, and Paikowsky, S. G. (2008). “Performance of sheet pile wall in peat.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 134(4): 445-458. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:4(445).(马萨诸塞州泥炭土地层中钢板桩性能分析)
Tan, Y.* (2008). “Finite element analysis of highway construction in peat bog.” Canadian Geotechnical Journal, 45(2): 147-160. https://doi.org/10.1139/T07-076.(有限元分析泥炭土沼泽地区高速公路建设)
宋享桦,谭勇*,陆烨,刘俊岩,刘燕等.不同入渗边界条件下简单均质砂土边坡失稳模型试验和数值模拟研究[J].岩石力学与工程学报,2024,43(5):1204-1218. https://doi.org/10.13722/j.cnki.jrme.2023.0756.
61. 王子业,谭勇*,龙莹莹. 不同渗漏位置下管道渗蚀物理模型试验及其细观机理研究[J], 浙江大学学报(工学版), 2024,58(6): 664-677.
62. 张誉津,刘俊城,谭勇*. 深厚富水砂性地层深基坑开挖降水变形特性研究[J]. 隧道建设, 2023, 43(9): 1511-1522.
63. 晁慧, 谭勇*, 刘天任. 富水砂性地层中地墙渗漏诱发地层塌陷灾害的细观机制探讨[J]. 隧道建设, 2023, 43(7): 1180-1189.
64. 刘俊城,谭勇*,张生杰. 地铁车站深基坑开挖变形智能多步预测方法[J], 上海交通大学学报, 2023,https://kns.cnki.net/kcms/detail//31.1466.U.20230227.1205.004.htm.
65. 刘俊城,谭勇*,宋享桦,樊冬冬,刘天任. 富水砂土基坑渗水对侧墙变形和周边环境的影响[J], 浙江大学学报(工学版), 2023,57(3):530-541.
66. 刘俊城,谭勇*. 富水砂层深基坑墙体渗漏灾害与对策分析[J]. 施工技术(中英文), 2023, 52(21): 63-69.
67. 张生杰,谭勇*. 基于 LSTM 算法的基坑变形预测[J], 隧道建设, 2022, 42(1): 113-120.
68. 杨波,谭勇*. 土石混合体地层中基坑开挖对邻近既有隧道影响[J], 哈尔滨工业大学学报, 2021,53(11):1-13.
69. 刘天任, 谭勇*, 李金龙. 基于CFD-DEM耦合分析暴雨作用下砂土深基坑灾变研究[J]. 路基工程, 2021, 214(1): 1-9.
70. 刘祥勇,宋享桦,谭勇,景旭成. 南通深厚富水砂性地层地铁深基坑抽水回灌现场试验研究[J], 岩土工程学报,2020,42(7):1331-1340.
71. 樊冬冬,刘祥勇,景旭成,谭勇*. 南通富水砂性地层地铁深基坑墙体渗漏原因分析[J], 隧道建设, 2020, 40(S1): 225-231.
72. 宋享桦,谭勇*,张生杰 . 暴雨气候下砂土边坡植被护坡模型试验研究[J], 哈尔滨工业大学学报, 2020, DOI:10.11918/201908166.
73. 杨波,谭勇*. 土石混合体地层中基坑开挖对邻近既有隧道影响模型试验研究[J], 隧道建设, 2019, 39(S2): 192-199.
74. 宋享桦, 谭勇*, 刘俊岩, 刘燕, 马桂宁. 拉拔作用下锚杆复合土钉支护协同作用细观机制研究[J], 岩石力学与工程学报, 2019,38(3): 591-605.
75. 蒋维真,谭勇*. 某软土地铁车站基坑纵向滑坡事故分析[J], 隧道建设, 2018,A02, 183-189.
76. 龙莹莹,谭勇*. 富水砂层中隧道渗蚀灾害的初步细观模拟分析[J], 现代隧道技术, 2018,55(S2): 501-510.
77. 陈万垒, 谭勇*,李想,柳楚楠. 盾构掘进破坏孤石诱发地层塌陷的灾变机制研究[J], 隧道建设, 2018,38 (5): 824-832.
78. 张宇飞, 谭勇*, 柳楚楠, 李想. 基于离散元法细观分析的隧道掘进对砾石地层扰动的初步研究[J], 隧道建设, 2017, 37(a02), 128-135.
79. 康志军, 谭勇*, 李金龙. 基于流-固耦合的盾构隧道开挖面稳定性研究[J], 隧道建设, 2017, 37(10): 1287-1295.
80. 康志军, 黄润秋, 卫彬, 谭勇*. 上海软土地区某逆作法地铁深基坑变形分析[J], 浙江大学学报(工学版), 2017, 51(8), 1527-1536.
81. 康志军, 谭勇*, 李想, 卫彬, 徐长节. 基坑围护结构最大侧移深度对周边环境的影响[J], 岩土力学, 2016, 37(10): 2909-2914, 2920.
82. 谭勇*, 康志军, 卫彬, 邓刚. 上海软土地区某地铁风井深基坑案例分析[J], 浙江大学学报(工学版), 2016, 50(5): 1048-1055.
83. 康志军*, 谭勇, 邓刚, 卫彬. 被动区土体加固对深基坑变形影响的研究[J], 长江科学院院报, 2016(33): 1-6.
84. 卫彬*, 李想, 谭勇. 上海某地铁深基坑工程施工案例分析[J], 施工技术, 2015(7): 72-76.
85. 廖少明*, 魏仕锋, 谭勇, 柳骏茜. 苏州地区大尺度深基坑变形性状实测分析[J], 岩土工程学报, 2015, (03): 458-469.
86. 魏仕锋, 谭勇, 廖少明*,申明亮. 钱江隧道盾构试验井深基坑实测分析[J], 土木工程学报, 2014,47(8): 112-119.
87. 朱炎兵*, 周小华, 魏仕锋, 谭勇. 建造过程对运营地铁车站结构内力变化影响分析[J], 铁道建筑, 2014, (1): 62-66.
88. 朱炎兵*, 周小华, 魏仕锋, 谭勇. 临近既有地铁车站的基坑变形性状研究[J], 岩土力学, 2013, (10): 2997-3002.