Shen Yan

Position:Associate professor

Degree: Doctoral Degree

    Research Interests

    Shen Yan is interested in the response and design of steel structures with an emphasis on understanding extreme limit states such as fracture and collapse. His research addresses structural performance at the material, connection, as well as the building scales. This work involves combinations of experiments, computational simulation and analytical modeling. Currently, He is focusing on developing component-based joint models for predicing the ultimate and post-ultimate states of steel beam-to-column connections.

    Projects

    • [1] National Natural Science Foundation of China project 52178152 "A Standard fracture criterion and full-range component method-based method for predicting the ultimate resistance and ductility of steel joints and steel frames", 2022.01-2025.12, principal investigator.

    • [2] National Natural Science Foundation of China project 51708417 "Meso-mechanism-based fracture model of constructional casting steel and failure mechanism of steel casting joints", 2018.01-2020.12, principal investigator.

    • [3] National Key Research and Development Program of China project 2022YFC3801902 “Key technology for standardized hot-rolled steel members and joints”, 2022.11-2026.10, principal investigator.

    • [4] National Key Research and Development Program of China project 2022YFC3803002 “Damage mechanism and resilience evaluation of city infrastructure subjected to multi hazards”, 2022.11-2026.10, principal investigator.

    • [5] Baoshan Iron & Steel Co., Ltd., “Behavior and application of high strength storage rack uplifts, 2023.11-2025.01, principal investigator.

    Publications

    • [43] “Generalised component method for bolted bearing type connections incorporating block shear failure”, Journal of Constructional Steel Research, 2024, Vol. 220, pp 108849, (J. Zhou, K. Rasmussen, S. Yan*, G. Deierlein, H. Zhang).

    • [42] “Measurement of strengths and fracture initiation strains of weld metal and HAZ in steel joints using miniature coupons”, Engineering Fracture Mechanics, 2024, Vol. 307, pp 110293, (X. Liu, S. Yan, J. Zhou, K. Rasmussen, G. Deierlein).

    • [41] “Generalised component method for bolted bearing type connections”, Steel Construction, 2024, Vol, 17(3), pp 118~130, (J. Zhou, S. Yan*, H. Zhang, K. Rasmussen, G. Deierlein).

    • [40] “Behaviour of in-service CHS gap K-joints strengthened with external stiffeners”, Thin-Walled Structures, 2024, Vol. 200, pp 111897, (J. Lyu, S. Yan*, X. Zhao, X. Chen, X. Wu, X. Xu, F. Gao).

    • [39] “A simplified method for the stress analysis of underground transfer structures crossing multiple subway tunnels”, Computer Modeling in Engineering & Sciences, 2024, Vol. 139, no. 3, pp 2893~2915, (S. Yan, D. Geng*, N. Dai, M. Long, Z. Bai), (WOS: 001195620100008).

    • [38] “Stiffness model for embedded steel column bases considering the effects of axial force and constraint of base plate”, Journal of Harbin Institute of Technology, 2024, Vol. 56, No. 2, pp 18~27, (X. Zhao, X. Xu, S. Yan*), (in Chinese, EI index), (AN: 20241015695217).

    • [37] “Collapse-resisting mechanism and damage propagation pattern of suspended-domes following sudden cable loss”, Journal of Constructional Steel Research, 2024, Vol. 213, pp 108338, (X. Zhao, Z. Xu, S. Yan*), (WOS:001123628900001).

    • [36] “A comparison of damage effectiveness of reinforced concrete beams by single-point and three-point array damage patterns”, Acta Armamentarii, 2023, Vol. 44, No. 12, pp 3851~3861, (L. Xia, W. Wu*, A. Pan, Y. Wang, Q. Wang, S. Yan), (in Chinese, EI index), (AN: 20240415420905).

    • [35] “Progressive-collapse mechanism of suspended-dome structures subjected to sudden cable rupture”, Buildings, 2023, Vol. 13, pp 1533, (Z. Xu*, S. Yan), (WOS: 001014128300001).

    • [34] “Mechanical model for the full range behaviour of bolted T-stubs”, Journal of Constructional Steel Research, 2023, Vol. 200, pp 107652, (J. Lyu, S. Yan*, S. He, X. Zhao, K. Rasmussen), (WOS: 000893211100004).

    • [33] “Buckling resistance of steel circular tubes strengthened by welding cover plates”, Journal of Constructional Steel Research, 2022, Vol. 199, pp 107631, (S. Yan, J. Lyu, A. Wu*), (WOS: 000879214500003).

    • [32] “Performance evaluation of axial-loaded circular steel tubes strengthened by welding under service load”, Engineering Structures, 2022, Vol. 271, pp 114948, (X. Zhao, J. Lyu, S. Yan*, X. Chen, X. Wu, X. Xu, F. Gao), (WOS: 000861191800001).

    • [31] “A generalised component method for bolted angle connections”, Journal of Constructional Steel Research, 2022, Vol. 198, pp 107530, (W. Wan, S. Yan*, H. Zhang, K. Rasmussen), (WOS: 000862785500004).

    • [30] “Behavior of multi-steel reinforced concrete columns with encased steel H-sections”, Engineering Structures, 2022, Vol. 264, pp 114463, (X. Zhao, F. Wen, S. Yan*), (WOS: 000832875700001).

    • [29] “Experimental investigation of the effect of Lode angle on fracture initiation of steels”, Engineering Fracture Mechanics, 2022, Vol. 271, pp 108637, (X. Liu, S. Yan*, K. Rasmussen, G. Deierlein),(WOS: 000826871300003).

    • [28] “Verification of void growth-based exponential damage function for ductile crack initiation over the full range of stress triaxialities”, Engineering Fracture Mechanics, 2022, Vol. 269, pp 108571, (X. Liu, S. Yan*, K. Rasmussen, G. Deierlein), (WOS: 000813347400001).

    • [27] “Generalised Component Method-based finite element analysis of steel frames”, Journal of Constructional Steel Research, 2021, Vol. 187, pp 106949, (S. Yan*, K. Rasmussen), (WOS: 000702736700002). 

    • [26] “Full-range behaviour of T-stubs with various yield line patterns”, Journal of Constructional Steel Research, 2021, Vol. 186, pp 106919, (X. Zhao, S. He, S. Yan*), (WOS: 000703126800003).

    • [25] “Full-range behaviour of top-and-seat angle connections”, Journal of Structural Engineering, 2021, Vol. 147, No. 1, pp 04020308, (S. Yan*, L. Jiang, K. Rasmussen, H. Zhang), (WOS: 000590478300023).

    • [24] “Ductility and fracture models of G20Mn5 cast steel”, Journal of Constructional Steel Research, 2020, Vol. 175, pp 106363, (S. Yan, X. Zhao*, P. He), (WOS: 000579836500030).

    • [23] “Analysis and design of cold-formed steel storage rack uprights under localised fires”, Structures, 2020, Vol. 27, pp 2082~2095, (C. Ren, P. Zhang, S. Yan, L. Dai*), (WOS: 000570182300003).

    • [22] “System reliability-based limit state design of support scaffolding systems”, Engineering Structures, 2020, Vol. 216, pp 110677, (C. Wang, H. Zhang, K. Rasmussen, J. Reynolds, S. Yan*), (WOS: 000539276800049).

    • [21] “Experimental evaluation of the full-range behaviour of steel beam-to-column connections”, Advanced Steel Construction, 2020, Vol. 16, No. 1, pp 77~84, (S. Yan*, K. Rasmussen, L. Jiang, C. Zhu, H. Zhang), (WOS: 000518017300009).

    • [20] “Full-range behaviour of double web angle connections”, Journal of Constructional Steel Research, 2020, Vol. 166, pp 105907, (S. Yan*, L. Jiang, K. Rasmussen), (WOS: 000536123900023).

    • [19] “Behaviour of H-section purlin connections in resisting progressive collapse of roofs”, Engineering Structures, 2019, Vol. 201, pp 109849, (S. Yan*, K. Rasmussen, X. Liu, L. Dai, X. Zhao), (WOS: 000501395300083).

    • [18] “Experimental full-range behaviour assessment of bolted moment end-plate connections”, Journal of Structural Engineering, 2019, Vol. 145, No. 8, pp 04019079, (C. Zhu, K. Rasmussen, S. Yan*, H. Zhang), (WOS: 000471751700002).

    • [17] “System-based limit state design criterion for 3D steel frames under wind loads”, Journal of Constructional Steel Research, 2019, Vol. 157, pp 440~449, (W. Liu, H. Zhang, K. Rasmussen, S. Yan*), (WOS: 000469904300034).

    • [16] “Identification of critical members for progressive collapse analysis of single-layer latticed domes”, Engineering Structures, 2019, Vol. 188, pp 111~120, (S. Yan, X. Zhao*, K. Rasmussen, H. Zhang), (WOS: 000465058200009).

    • [15] “Reliability calibrations for the design of cold-formed steel portal frames by advanced analysis”, Engineering Structures, 2019, Vol. 182, pp 164~171, (F. Sena Cardoso, H. Zhang, K. Rasmussen, S. Yan*), (WOS: 000457510700014). 

    • [14] “Generalised Component Model for Structural Steel Joints”, Journal of Constructional Steel Research, 2019, Vol. 153, pp 330~342, (C. Zhu, K. Rasmussen, S. Yan*), (WOS: 000457510200025).

    • [13] “Simulation of fracture of a tubular X-joint using a shear-modified Gurson-Tvergaard-Needleman model”, Thin-Walled Structures, 2018, Vol. 132, pp 120~135, (J. Liu, S. Yan, X. Zhao*), (WOS: 000449569000011)

    • [12] “A new type of truss joint for prevention of progressive collapse”, Engineering Structures, 2018, Vol. 167, pp 203~213, (S. Yan, X. Zhao*, Y Chen, Z. Xu, Y. Lu), (WOS: 000434238900018). 

    • [11] “A fracture criterion for fracture simulation of ductile metals based on micro-mechanisms”, Theoretical and Applied Fracture Mechanics, 2018, Vol. 95, pp 127~142, (S. Yan, X. Zhao*), (WOS: 000436212300009). 

    • [10] “Ductile fracture simulation of constructional steels based on yield-to-fracture stress-strain relationship and micro-mechanism based fracture criterion”, Journal of Structural Engineering, 2018, Vol. 144, No. 3, pp 04018004, (S. Yan, X. Zhao*, A. Wu), (WOS: 000422886400010).

    • [9] “Monitoring a progressive collapse test of a spherical lattice shell using high-speed videogrammetry”, The Photogrammetric Record, 2017, Vol. 32, No. 159, pp 230~254, (X. Tong*, S. Gao, S. Liu, Z. Ye, P. Chen, S. Yan, X. Zhao, L. Du, X. Liu, K. Luan), (WOS: 000411359800004).

    • [8] “Collapse-resisting mechanisms of planar trusses following sudden member loss”, Journal of Structural Engineering, 2017, Vol. 143, No. 9, pp 04017114, (S. Yan, X. Zhao*, Y. Lu), (WOS: 000415376800037).

    • [7] “Experimental study on progressive collapse-resistant behavior of planar trusses”, Engineering Structures, 2017, Vol. 135, pp 104~116, (X. Zhao*, S. Yan, Y Chen, Z. Xu, Y. Lu), (WOS: 000394191000009).

    • [6] “Comparison of progressive collapse resistance of single-layer latticed domes under different loadings”, Journal of Constructional Steel Research, 2017, Vol. 129, pp 204~214, (X. Zhao*, S. Yan, Y. Chen), (WOS: 000392782100018).

    • [5] “Experimental investigation on overall single-layer folded-plate space grid frame model of the Shenyang Culture and Art Center”, Journal of Building Structures, 2017, Vol. 38. No. 1, pp 42~51, (X. Zhao*, S. Yan, Y. Chen, Y. Lin), (in Chinese, EI index). (AN: 20170903385405).

    • [4] “Progressive collapse test of a space frame structure”, Journal of Building Structures, 2016, Vol. 37, No. 6, pp 1~8, (X. Zhao*, S. Yan, Y. Chen), (in Chinese, EI index), (AN: 20162702563933).

    • [3] “Research and application of beam string structures”, Structural Engineering International: Journal of IABSE, 2015, Vol. 25, No. 1, pp 26~33, (X. Zhao*, S. Yan, Z. Xu, A. Wu), (WOS: 000350538400005).

    • [2] “A review on the progressive collapse study for large-span space structures”, Journal of Building Structures, 2013, Vol. 34, No. 4, pp 1~14, (X. Zhao*, S. Yan, Y. Chen), (in Chinese, EI index), (AN: 20131716238716).

    • [1] “Experimental study of complex multi-planar tubular joints”, Engineering Mechanics, 2010, Vol. 27, No. s2, pp 207~211, (X. Zhao, X. Xu*, S. Yan, B. Wang, Y. Chen, Z. Fan, et al), (in Chinese, EI index), (AN: 20110313592447).

    • * indicates corresponding author                                                                                                                                              

    Patents

  • No content

    Others

  • No content

The Last Update Time:--
All contents  copyright 2020. All rights reserved   Support by: Wei Cheng 1239 Siping Road, Shanghai, 200092, PR China Tongji University