淡丹辉

职称:教授

学位:工学博士学位

    研究方向

    1、主要研究方向

       桥梁监测系统规划设计、结构智慧监测的一般性理论、结构振动控制、复杂索缆结构动力学、既有结构评估和诊断等。

    2、代表性科研成果

    (1)桥梁智慧监测系统设计方法及关键技术 

    👁️‍🗨️提出了桥梁健康监测系统设计方法,完成了多个第三代桥梁健康监测系统,成为国内同类系统的示范;

    👁️‍🗨️提出桥梁监测和科学计算平台,构建了网络化桥梁云监测诊断系统;

    👁️‍🗨️提出了网级中小桥梁群监测模式和网级云监测技术体系;

    👁️‍🗨️提出基于机器视觉和人工智能的全桥面交通荷载监测和航道桥梁主动防船撞技术;

    👁️‍🗨️提出了基于交通流荷载和效应监测连接的路网桥梁数字孪生系统模型;

    👁️‍🗨️提出了光纤光栅结构风压传感技术和具有高精度、高分辨率和高灵敏度的阵列型FBG应变传感技术;

    (2)结构监测数据的智慧化处理、状态识别和评估预警

    👁️‍🗨️面向工程结构监测系统建立的流式监测数据的实时在线处理需求,先后研发了监测信号的递归式实时在线滤波技术,时序滑动递归式希尔伯特变换技术、EMD变换技术和VMD变换技术,以及基于最小二乘的实时加速度积分位移技术,多荷载混合效应的时间多尺度筛分和分治技术体系;

    👁️‍🗨️面对振动监测信号,提出了基于频率-阻尼因子的振动信号高精度二维谱估计方法(dr_APES),以此为基础发展了面向流式数据的块递推高精度实时谱估计技术,基于递归式带通滤波和希尔伯特变换的实时在线谱估计技术;

    👁️‍🗨️面对工程结构振动监测中的模态参数高精度识别与实时在线跟踪需求,分别提出了基于dr_APES高精度谱估计的结构模态参数高精度估计技术,面向流式监测数据的块递推高精度实时模态参数识别方法,以及面向物联网前置计算和边缘计算架构的分布式模态参数识别技术;

    👁️‍🗨️面向桥梁等交通土建结构的工作荷载(交通流)监测需要,提出了基于动态称重和机器视觉融合全桥面的交通流荷载实时监测技术,在此基础上,提出了6种形态的的交通流荷载模型建模技术及其系统监测识别技术;

    👁️‍🗨️面向面向桥梁群的群体监测需要,提出了基于交通荷载监测信息连接的桥梁群数字孪生系统,分别针对不同桥梁对象和评估需求,提出了7种形式的数字孪生模型并给出了其各自的建模技术和评估业务描述;

    👁️‍🗨️面对桥梁工程结构服役期性态监测与评估需求,构建了一套完整的结构服役性态指标的定义与优选、识别与跟踪、评估与应用的技术架构,以此形成桥梁工程结构智慧化监测和感知技术的框架和主线;

    👁️‍🗨️构建了面向桥梁结构的服役性能监测指标体系,包括装配式桥梁协同工作性能监测的指标体系,统计稳态交通流荷载作用下的大数据指标体系,以及蕴含全模态信息的模态相关函数类指标;

    👁️‍🗨️针对桥梁结构的工作状态监测需要,定义和发展了桥梁结构工作状态指标体系,提出了基于当前荷载效应水平的指标的监测方法、提出了四种形态的工程结构状态指标理论框架。

    👁️‍🗨️在上述工程结构工作状态指标和服役性能指标的理论研究基础上,发展了分别面向装配式梁桥、复杂索缆体系桥梁、大跨高铁桥梁的服役性能智能评估技术;面向异常工作状态的监测预警技术,包括悬索桥涡振智慧感知和预警方法,独柱墩箱梁桥智能倾覆监测预警方法;面向累积态工作状态指标,发展了面向拉索构件的的智能在线疲劳状态评估和寿命预测技术。

    (3)结构耐久性机理、评估与监测

    👁️‍🗨️基于监测的拉索金属索丝在线智慧疲劳寿命监测评估技术和拉索PE保护层的耐久性机理、评估与监测技术;

    (4)索缆动力学、监测及振动控制:

    👁️‍🗨️建立了一种适用于复杂索缆的精细化动力特性分析理论,应用于索缆体系结构的监测诊断;

    👁️‍🗨️提出了基于颗粒阻尼机理的新型拉索阻尼器原型技术和颗粒阻尼与风雨线耦合减震技术;


    详细成果可参见微信公众号:桥梁结构健康监测

    https://mp.weixin.qq.com/s/2FAx123lT-WI5Hv4r-zCSQ


    研究项目

    纵向课题

    1. 国家自然科学基金面上项目,复杂索缆结构动力分析理论及工程应用研究, 2018.11-2022.12, 主持.

    2. 外省市协作实验室开放课题,装配式桥梁关键性能监测指标及其适用性研究,2019.01-2019.11,主持.

    3. 科技部国家重点研发计划,基于仿生立体机器视觉技术的混凝土桥表观损坏参量计量标准技术及装置课题,2017.11-2020.12,主持.

    4. 科技部国家863计划,基于物联网的区域桥梁自供电分布式智能监测与诊断技术,2014.08-2018.05,主持.

    5. 上海市协作标准制定,桥梁结构监测系统技术规程,2013.04-2017.07,主持.

    6. 中央高校预可研项目,城市防灾物联网关键技术研究与集成示范 ,2010.12-2015.01,主持.

    7. 国家自然科学基金面上项目,在线模态参数识别的方差控制及其在桥梁健康监测中的应用,2009.11-2012.12,主持.

    8. 外省市协作产学研项目,大跨桥梁集成健康监测软件系统研究及开发,2009.02-2014.01,主持.

    横向课题

    1. 自然科学类四技项目,桥梁高精度交通流监测系统可行性研究,2022.04-2023.06,主持.

    2. 自然科学类四技项目,全桥面交通流监测配套软件开发与测试,2022.04-2023.12,主持.

    3. 自然科学类四技项目,全桥面交通流荷载智慧监测系统硬件系统实施与开发,2022.04-2023.12,主持.

    4. 自然科学类四技项目,智慧桥梁系统之智能支座产品与应用综合研究,2020.12-2022.06,主持.

    5. 自然科学类四技项目,城市集群桥梁监测目标体系及指标算法研究,2020.09-2021.04,主持.

    6. 自然科学类四技项目,基于感知神经网的桥梁管养系统研究与开发,2021.10-2023.05,主持.

    7. 自然科学类四技项目,新建郑济铁路郑州至濮阳段郑州黄河特大桥钢桁梁健康监测项目,2021.10-2023.12,主持.

    8. 自然科学类四技项目,西堠门大桥涡振预判技术服务,2021.07-2022.12,主持.

    9. 自然科学类四技项目,高速公路技术研究(1-3),2006.05-2014.01,主持.

    10. 自然科学类四技项目,合生大桥结构健康检测系统软件设计及开发,2007.04-2017.07,主持.

    11. 自然科学类四技项目,东海大桥结构健康检测系统离线评估支撑平台专项技术指导,2007.12-2014.01,主持.

    12. 自然科学类四技项目,桥区船舶通航全天侯引导与船撞监控系统研究,2010.10-2014.01,主持.

    13. 自然科学类四技项目,中小跨径桥梁结构网级安全监测与评估(装配式梁桥),2016.02-2018.01,主持.

    14. 自然科学类四技项目,桥梁安全运行大数据采集技术及结构监测系统研究,2015.12-2017.12,主持.

    15. 自然科学类四技项目,装配式梁桥结构监测与评估关键技术研究,2016.02-2017.02,主持.

    16. 自然科学类四技项目,桥梁主动防船撞系统测试和试验,2014.12-2017.06,主持.

    17. 自然科学类四技项目,中小桥结构监测系统研究与同济路桥示范监测系统建设,2016.09-2021.07,主持.

    18. 自然科学类四技项目,基于监测指标的桥梁桥面铺装大修全寿命决策与评估方法研究,2012.03-2014.01,主持.

    19. 自然科学类四技项目,山区大跨度桥梁指挥监测系统方案研究子课题,2019.09-2021.12,主持.

    20. 自然科学类四技项目,中小跨径桥梁结构网级安全监测与评估,2015.11-2018.01,参与.

    21. 自然科学类四技项目,苏通大桥斜拉索减振设计与实施审查评估,2006.07-2013.12,参与.

    22. 自然科学类四技项目,外海跨海大桥健康监测系统研究,2006.08-2014.06,参与.

    23. 自然科学类四技项目,上海长江大桥结构健康监测系统方案研究,2006.05-2014.06,参与.

    24. 自然科学类四技项目,苏通大桥斜拉索减振设计与实施审查评估,2006.07-2013.12,参与.

    25. 自然科学类四技项目,合生大桥结构健康检测系统软件设计,2008.01-2018.05,参与.

    26. 自然科学类四技项目,上海崇明越江通道长江隧桥工程结构健康检测系统,2007.11-2013.11,参与.

    27. 自然科学类四技项目,上海市闵浦大桥健康检测系统初步设计方案研究,2007.12-2008.05,参与.

    28. 自然科学类四技项目,剑邑大桥运营检测管理系统技术支持,2008.09-2014.06,参与.

    29. 自然科学类四技项目,广东九江大桥防船撞视频监测预警系统设计与实施,2011.05-2018.05,参与.

    30. 自然科学类四技项目,中小跨径桥梁结构网级安全监测与评估(箱梁桥),2015.11-2018.01,参与.

    出版论著

    1、专著

    [1]. 淡丹辉. 《桥梁结构智慧监测——理论与实践》. 北京: 机械工业出版社, 2021. ISBN 978-7-111-67713-0 

    [2]. 淡丹辉,韩飞,徐斌.《复杂索缆体系动力学分析及智慧监测》.上海:上海科学技术出版社, 2022. ISBN 978-7-5478-5750-2 

    [3]. 《上海市工程建设规范—桥梁结构监测系统技术规程》.上海:同济大学出版社,2016.DG/TJ08-2194-2016 J13534-2016  

    2、论文

       已发表论文150余篇。其中,SCI论文77篇,其中一篇论文被ESI热点(0.1%)和ESI高被引(1%),EI论文30余篇。

    ✔️SCI:

    [83] Wenzhao Wang, Danhui Dan*, Jingqing Gao. (2023). Study on Damage Identification of High-Speed Railway Truss Bridge Based on Statistically Stable Strain Characteristic Function. Engineering Structures. V294(2023):116723. https://doi.org/10.1016/j.engstruct.2023.116723   (SCI, Q1, if=5.5). (土木学院权威期刊)

    [82] Wenzhao Wang,Danhui Dan* ,Fangliang Jian. (2023). Study on Strain Characteristic Function for Performance Evaluation of High Speed Railway Steel Truss Bridge. Structures. V55(2023):441-452. https://doi.org/10.1016/j.istruc.2023.05.154   (SCI, Q2, if=4.1)

    [81] Liangfu Ge; Danhui Dan*, Ki Young Koo, Yifeng Chen. (2023). An improved system for long-term monitoring of full-bridge traffic load distribution on long-span bridges. Structures.  V54(August 2023):1076-1089.  https://doi.org/10.1016/j.istruc.2023.05.103  (SCI, Q2, if=4.1).

    [80] Xuewen Yu; Danhui Dan*Liangfu Ge. (2023). Time-Domain Distributed Modal Parameter Identification Based on Mode Decomposition of Single-Channel Vibration Response. Engineering Structures. V15(August, 2023):116323,  https://doi.org/10.1016/j.engstruct.2023.116323 (SCI, Q1, if=5.582).(土木学院权威期刊)

    [79] Danhui Dan; Gang Zeng; Ruiyang Pan; Pengcheng Yin. (2023). Block-wise recursive sliding variational mode decomposition method and its application on online separating of bridge vehicle-induced strain monitoring signals. Mechanical Systems and Signal Processing.  V198 (2023):1103892023-4-19, https://doi.org/10.1016/j.ymssp.2023.110389   (SCI, Q1, if=8.934).

    [78] Liangfu Ge, Ki Young Koo, Miaomin Wang, James Brownjohn, Danhui Dan*. (2023). Bridge Damage Detection using Precise Vision-based Displacement Influence Lines and Weigh-in-motion Devices: Experimental Validation. Engineering Structures. V288(2023):116185, https://doi.org/10.1016/j.engstruct.2023.116185     (SCI, Q1, if=5.582). (土木学院权威期刊)  

    [77] Bin Xu, Haoxiang Yang, Danhui Dan*. (2023). Inversion of dynamic displacement response of cable in the whole field based on single vibration measurement. Mechanical Systems and Signal Processing. V195(2023):110292. https://doi.org/10.1016/j.ymssp.2023.110292  (SCI, Q1, if=8.934)

    [76] Xuewen Yu; Danhui Dan*. (2023). Real-time cable force identification based on block recursive Capon spectral estimation method. Measurement, 2023:112664, https://doi.org/10.1016/j.measurement.2023.112664   (SCI, Q1, if=5.131).

    [75] Xuewen Yu; Danhui Dan*. (2023). Structural modal parameters identification based on 2D spectral analysis. Journal of Sound and Vibration. V552(2023):117638, https://doi.org/10.1016/j.jsv.2023.117638  (SCI, Q1, if=4.761)

    [74] Dan Danhui, Wenhao Zheng*, Zhaoyuan Xu. (2023). Research on monitoring index of transverse cooperative working performance of assembled multi-girder bridges based on displacement spectrum similarity measure, Structures, V48(2023):1322-1332, https://doi.org/10.1016/j.istruc.2023.01.023   (SCI, Q2, if=4.010).

    [73] Liao X, Dan Dan.*, Han F. Dynamic characteristics analysis method of flexible hanger based on Wittrick-Williams algorithm. Journal of Low Frequency Noise, Vibration and Active Control. 2022; 0(0). doi:10.1177/14613484221141318 ,(SCI, Q2, if=2.368)

    [72] Dan D, Kong Z. Bridge vehicle-induced effect influence line characteristic function based on monitoring big data: definition and identification. Structural Health Monitoring. 2022;0(0). doi:10.1177/14759217221139133  (SCI , IF=5.710, Q1). 

    [71] Zeng, G., Dan, D.*, Guan, H., & Ying, Y. (2022). Online Intelligent Perception of Front Blind Area of Vehicles on a Full Bridge Based on Dynamic Configuration Monitoring of Main Girders. Sensors, 22(19), 7342. https://doi.org/10.3390/s22197342 (SCI, Q2, if=3.847).  

    [70] Liao, X., Dan, D. *, Han, F., & Zhao, R. (2022). Research on the Dynamic Characteristics of the Double Slings System with Elastic Connection Considering Boundary Conditions. Mathematics, 10(17), 3129. https://doi.org/10.3390/math10173129 , (SCI, Q1, if=2.592) .

    [69] Dan, D.*, Wang, C., Pan, R., & Cao, Y. (2022). Online Sifting Technique for Structural Health Monitoring Data Based on Recursive EMD Processing Framework. Buildings, 12(9), 1312. https://doi.org/10.3390/buildings12091312 , (SCI, Q2, if=3.324). 

    [68] Dan, D.*, & Hao, X. (2023). An automatic real-time cable modal frequency identification and tracking algorithm by combining recursive band-pass filter and recursive Hilbert transform. Mechanical Systems and Signal Processing, 183, 109614. https://doi.org/10.1016/j.ymssp.2022.109614   , (SCI, Q1, if=8.934).  

    [67] Xu, B., Dan, D. *, & Yu, X. (2022). Real-time online intelligent perception of time-varying cable force based on vibration monitoring. Engineering Structures, 270, 114925.https://doi.org/10.1016/j.engstruct.2022.114925 , (SCI, Q1, if=5.582). (土木学院权威期刊)  .

    [66] Fei, H.*, Zichen, D., & Danhui, D. (2022). A unified method for in-plane vibration analysis of double-beam systems with translational springs. Journal of Sound and Vibration, 117042. DIO: 10.1016/j.jsv.2022.117042.  (SCI, Q1, if=4.751).  

    [65] Zhao, R., Feng, Z.*, Dan, D., Wu, Y., & Li, X. (2022). Numerical Simulation of CAARC Standard High-Rise Building Model Based on MRT-LBM Large Eddy Simulation. Shock and Vibration, 2022. DIO: 10.1155/2022/1907356, (SCI, Q3,if=1.616 ).  

    [64] Yu, X., & Dan, D. * (2022). Online frequency and amplitude tracking in structural vibrations under environment using APES spectrum postprocessing and Kalman filtering. Engineering Structures, 259, 114175. DIO: 10.1016/j.engstruct.2022.114175, (SCI,Q1, if=2.755). (土木学院权威期刊)  

    [63] Yao, Z., Dan, D. *, Zhao, R., & Ma, S. (2022). Static effect of assembled beam bridge under statistical and stable traffic flow load. Journal of Low Frequency Noise, Vibration and Active Control, 14613484221091074. doi:10.1177/14613484221091074. (SCI, Q2, if=2.368).  

    [62] Zhang, L., Yang, S., Chen, F., Xu, B.*, & Dan, D. (2022, March). Parametric dynamic analysis of a double-hanger system via rigid cross-ties in suspension bridges. In Structures (Vol. 37, pp. 849-857). Elsevier. DIO: 10.1016/j.istruc.2022.01.038, (SCI, Q2, if=4.010).  

    [61] Dan, D., Liao, X., & Han, F.* (2022). Research on the Dynamic Characteristics of Cables Considering the Constraints at Both Ends of the Cables. Applied Sciences, 12(4), 2100.DIO:10.3390/app12042100, (SCI, Q2, if=2.838).  

    [60] Ge, L., Dan, D.*, Liu, Z., & Ruan, X. (2022). Intelligent simulation method of bridge traffic flow load combining machine vision and weigh-in-motion monitoring. IEEE Transactions on Intelligent Transportation Systems. DIO: 10.1109/TITS.2022.3140276. (SCI, Q1, if=9.561, top 3 期刊).  

    [59] Dan, D.*, & Li, H. (2022). Monitoring, intelligent perception, and early warning of vortex‐induced vibration of suspension bridge. Structural Control and Health Monitoring, 29(5), e2928. DIO: 10.1002/stc.2928, (SCI, if=3.74,Q1, top).  (土木学院权威期刊)  

    [58] Han, F.*, Dan, D., Xu, Z., & Deng, Z. (2022). A vibration-based approach for damage identification and monitoring of prefabricated beam bridges. Structural Health Monitoring, 14759217211047899. DIO:10.1177/14759217211047899, (SCI,Q1,if=5.710).  

    [57] Dan, D.*, Ying, Y., & Ge, L. (2021). Digital twin system of bridges group based on machine vision fusion monitoring of bridge traffic load. IEEE Transactions on Intelligent Transportation Systems. DIO: 10.1109/TITS.2021.3130025, (SCI, Q1, if=9.561, top 3 期刊).  

    [56] Wang, Q., & Dan, D.* (2022). A simplified modeling method for multi-particle damper: Validation and application in energy dissipation analysis. Journal of Sound and Vibration, 517, 116528. DIO: 10.1016/j.jsv.2021.116528, (SCI, JCR Q1, if=4.751).  

    [55] Yu, X.*, & Dan, D. (2022). Block-wise recursive APES aided with frequency-squeezing postprocessing and the application in online analysis of vibration monitoring signals. Mechanical Systems and Signal Processing, 162, 108063.DIO:10.1016/j.ymssp.2021.108063, (SCI, if=5.001,Q1).   

    [54] Han, F.*, Deng, Z., & Dan, D. (2021). Modelling and analysis framework for nonlinear dynamics of submerged tensioned cables. Ocean Engineering, 232, 109123. DIO:10.1016/j.oceaneng.2021.109123, (SCI, JCR ,Q1, if=4.372).  

    [53] Dan, D., Yu, X., Han, F.*, & Xu, B. (2022). Research on dynamic behavior and traffic management decision-making of suspension bridge after vortex-induced vibration event. Structural Health Monitoring, 21(3), 872-886. DOI: 10.1177/14759217211011582, (SCI , IF=5.710, Q1).  

    [52] Xu, B., Dan, D.*, Han, F., & Zou, Y. (2021). Parameter Identification of Main Cables of Cable Suspension Structures Based on Vibration Monitoring of Cable: Methodology and Experimental Verification. Journal of Structural Engineering, 147(4), 04021023. DOI: 10.1061/(ASCE)ST.1943-541X.0002965, (SCI, if=2.454, Q1).  

    [51] Dan, D., Wang, Q.*, & Gong, J. (2021). Application of coupled multi-body dynamics—discrete element method for optimization of particle damper for cable vibration attenuation. Frontiers of Structural and Civil Engineering, 15(1), 244-252. DIO: 10.1007/s11709-021-0696-x, (SCI, Q1, if=1.272).  

    [50] Xu, Z., Dan, D.*, & Deng, L. (2021). Vibration-based monitoring for transverse cooperative working performance of assembled concrete multi-girder bridge: System design, implementation and preliminary application. International Journal of Structural Stability and Dynamics, 21(03), 2150043. DOI: 10.1142/S0219455421500437, (SCI, Q2, if=2.957).  

    [49] Dan, D.*, & Dan, Q. (2021). Automatic recognition of surface cracks in bridges based on 2D-APES and mobile machine vision. Measurement, 168, 108429. DIO: 10.1016/j.measurement.2020.108429,  (SCI, if=2.218, Q2).  

    [48] Fei, H.*, Danhui, D., & Zichen, D. (2021). A dynamic stiffness-based modal analysis method for a double-beam system with elastic supports. Mechanical Systems and Signal Processing, 146, 106978. DIO:10.1016/j.ymssp.2020.106978,(SCI, if=5.001,Q1).  

    [47] Fei, H., Zichen, D., & Danhui, D.* (2021). Exact dynamic analysis of multi-segment cable systems. Mechanical Systems and Signal Processing, 146, 107053. DIO: 10.1016/j.ymssp.2020.107053, (SCI, if=5.001,Q1).  

    [46] Ge, L., Dan, D.*, & Li, H. (2020). An accurate and robust monitoring method of full-bridge traffic load distribution based on YOLO-v3 machine vision. Structural Control and Health Monitoring, 27(12), e2636. DIO: 10.1002/stc.2636, (SCI, if=3.74,Q1, top). (土木学院权威期刊)  

    [45] Dan, D., Xu, B., Xia, Y.*, Yan, X., & Jia, P. (2020). Intelligent parameter identification for bridge cables based on characteristic frequency equation of transverse dynamic stiffness. Journal of Low Frequency Noise, Vibration and Active Control, 39(3), 678-689. DIO: 10.1177/1461348418814617 , (SCI, IF=1.491, Q3 ).  

    [44] Fei, H., Zichen, D., & Danhui, D.* (2020). A novel method for dynamic analysis of complex multi-segment cable systems. Mechanical Systems and Signal Processing, 142, 106780. (SCI, if=5.001, Q1).  

    [43] Zhao, Y., Dan, D.*, Yan, X., & Zhang, K. (2020). Cloud monitoring system for assembled beam bridge based on index of dynamic strain correlation coefficient. Smart Structures and Systems, 26(1), 11-21. DIO: 10.12989/sss.2020.26.1.011 , (SCI, if=3.622, Q1).  

    [42] Fei, H., Danhui, D.*, Yiqing, Z., & Huan, L. (2020). Experimental and theoretical study on cable-supporting system. Mechanical Systems and Signal Processing, 140, 106638. DIO: 10.1016/j.ymssp.2020.106638 , (SCI, if=5.001,Q1).  

    [41] Ge, L., Dan, D.*, Yan, X., & Zhang, K. (2020). Real time monitoring and evaluation of overturning risk of single-column-pier box-girder bridges based on identification of spatial distribution of moving loads. Engineering Structures, 210, 110383. DIO: 10.1016/j.engstruct.2020.110383, (SCI,Q1, if=2.755). (土木学院权威期刊)  

    [40] Fei, H., & Danhui, D.* (2020). Free vibration of the complex cable system− An exact method using symbolic computation. Mechanical Systems and Signal Processing, 139, 106636. DIO: 10.1016/j.ymssp.2020.106636 , (SCI, if=5.001, Q1).  

    [39] Fei, H., Deng, Z., & Dan, D.* (2021). Vertical vibrations of suspension bridges: a review and a new method. Archives of Computational Methods in Engineering, 28(3), 1591-1610. DIO: 10.1007/s11831-020-09430-4 , (Q1,中科院Top期刊,if=7.242).  

    [38] Fei, H., Danhui, D.*, Wei, C., & Jubao, Z. (2020). A novel analysis method for damping characteristic of a type of double-beam systems with viscoelastic layer. Applied Mathematical Modelling, 80, 911-928. DIO: 10.1016/j.apm.2019.11.008, (SCI, Q1, if=2.841). (2020年7月15日,同时被遴选为ESI高被引(1%)和HOT论文(0.1%))  

    [37] Dan, D.*, Yu, X., Yan, X., & Zhang, K. (2020). Monitoring and evaluation of overturning resistance of box girder bridges based on time-varying reliability analysis. Journal of Performance of Constructed Facilities, 34(1), 04019101. DIO: 10.1061/(ASCE)CF.1943-5509.0001375 , (SCI, if=1.542, Q2).  

    [36] Xu, B., Dan, D.*, & Zou, Y. (2019). Accurate identification method and practical formula of suspender tension based on tri-segment suspender dynamic model. Engineering Structures, 200, 109710. DIO: 10.1016/j.engstruct.2019.109710 , (SCI, Q1, if=2.755, 1 Dec 2019). (土木学院权威期刊)  

    [35] Xu, B., Dan, D.*, & Zhao, Y. (2019). Frequency-Domain Estimation Method for Vibration-Induced Additional Cable Tension Based on Acceleration Monitoring. Journal of Vibration and Acoustics, 141(6). DIO:10.1115/1.4044673 ,(SCI, if=1.929,Q2).  

    [34] Dan, D.*, Ge, L., & Yan, X. (2019). Identification of moving loads based on the information fusion of weigh-in-motion system and multiple camera machine vision. Measurement, 144, 155-166. DIO:10.1016/j.measurement.2019.05.042 ,(SCI, if=2.218, Q2).  

    [33] Xu, B., Dan, D.*, Zou, Y., & Lei, H. (2019). Research on characteristic function for cable inverse analysis based on dynamic stiffness theory and its application. Engineering Structures, 194, 384-395. DIO:10.1016/j.engstruct.2019.05.062,(SCI, Q1, if=2.755, 29 May, 2019). (土木学院权威期刊)  

    [32] Dan, D.*, Han, F.*, Cheng, W., & Xu, B. (2019). Unified modal analysis of complex cable systems via extended dynamic stiffness method and enhanced computation. Structural Control and Health Monitoring, 26(10), e2435. DIO: 10.1002/stc.2435, (SCI, if=3.74, Q1).  (土木学院权威期刊)  

    [31] Dan, D.*, Xu, Z., Zhang, K., & Yan, X. (2019). Monitoring index of transverse collaborative working performance of assembled beam bridges based on transverse modal shape. International Journal of Structural Stability and Dynamics, 19(08), 1950086. DIO: 10.1142/S021945541950086X , (SCI, if=2.082, Q2).  

    [30] Han, F.*, Wang, H., & Dan, D. H. (2019, August). Dynamic response of a bridge deck pavement. In Proceedings of the Institution of Civil Engineers-Transport (Vol. 172, No. 4, pp. 221-232). Thomas Telford Ltd. DIO: 10.1680/jtran.17.00009, (SCI, if=1.455, Q4 ).  

    [29] Zheng, W., Dan, D.*, Cheng, W., & Xia, Y. (2019). Real-time dynamic displacement monitoring with double integration of acceleration based on recursive least squares method. Measurement, 141, 460-471. DIO: 10.1016/j.measurement.2019.04.053, (SCI, if=2.218, Q2).  

    [28] Han, F., Dan, D.*, & Cheng, W. (2019). Exact dynamic characteristic analysis of a double-beam system interconnected by a viscoelastic layer. Composites Part B: Engineering, 163, 272-281. DIO: 10.1016/j.compositesb.2018.11.043  (SCI, IF=6.864, Q4).  

    [27] Dan, D.*, Zhao, Y., Wen, X., & Jia, P. (2019). Evaluation of lateral cooperative working performance of assembled beam bridge based on the index of strain correlation coefficient. Advances in Structural Engineering, 22(5), 1062-1072. DIO: 10.1177/1369433218804924, (SCI, if=1.32,Q2).  

    [26] Han, F., Dan, D.*, Cheng, W., & Jubao, Z. (2018). An improved Wittrick-Williams algorithm for beam-type structures. Composite Structures, 204, 560-566. DIO: 10.1016/j.compstruct.2018.07.108   (SCI, if=3.856, Q1).  

    [25] Dan, D.*, Jia, P., Li, G., & Niu, P. (2018). Experimental study on mechanical and sensing properties of smart composite prestressed tendon. Materials, 11(11), 2087. DIO: 10.3390/ma11112087,  (SCI,IF=2.972,Q2).  

    [24] Han, F., Dan, D.*, & Cheng, W. (2018). Extension of dynamic stiffness method to complicated damped structures. Computers & Structures, 208, 143-150. DIO: 10.1016/j.compstruc.2018.07.010, (SCI, if=2.887, Q2).  

    [23] Han, F., Dan, D. H.*, & Yan, X. F. (2018). Dynamic characteristics of a double-layer sheathing cable system based on dynamic stiffness theory. International Journal of Structural Stability and Dynamics, 18(07), 1850096. DIO: 10.1142/S0219455418500967, (SCI, IF=2.957,Q2).  

    [22] Han, F., Dan, D.*, & Cheng, W. (2018). An exact solution for dynamic analysis of a complex double-beam system. Composite Structures, 193, 295-305. DIO: 10.1016/j.compstruct.2018.03.088 (SCI, if=4.829, Q1).  

    [21] Fei, H., Danhui, D.*, Cheng, W., & Jia, P. (2018). Analysis on the dynamic characteristic of a tensioned double-beam system with a semi theoretical semi numerical method. Composite Structures, 185, 584-599. DOI: 10.1016/j.compstruct.2017.11.010, (SCI, if=4.829, Q1).  

    [20] Dan, D. H., Xia, Y., Xu, B., Han, F., & Yan, X. F. (2018). Multistep and multiparameter identification method for bridge cable systems. Journal of Bridge Engineering, 23(1), 04017111. DIO: 10.1061/(ASCE)BE.1943-5592.0001145, (SCI, if=3.385, Q2).  

    [19] Dan-hui, D.*, Xiang-jie, W., Xing-fei, Y., & Cheng, W. (2018). Estimation and Modeling of Fluctuating Wind Amplitude and Phase Spectrum Using APES Algorithm Based on Field Monitored Data. Shock and Vibration, 2018. DIO: 10.1155/2018/6038159, (SCI, if=1.616, Q3).  

    [18] Han, F.*, Dan, D. H., & Wang, H. (2018). A study on dynamic amplification factor and structure parameter of bridge deck pavement based on bridge deck pavement roughness. Advances in Civil Engineering, 2018. DIO: 10.1155/2018/9810461, (SCI,if=1.104, Q4).  

    [17] Wen, X., Lei, W., Dan, D.*, & Liu, G. (2017). Study on a measurement index of transverse collaborative working performance of prefabricated girder bridges. Advances in Structural Engineering, 20(12), 1879-1890. DOI: 10.1177/1369433217700422. (SCI, if=2.438, Q3).  

    [16] Wang, X., Dan, D.*, Xiao, R., & Yan, X. (2017). Numerical investigation and optimal design of fiber Bragg grating based wind pressure sensor. Frontiers of Structural and Civil Engineering, 11(3), 286-292. DIO: 10.1007/s11709-017-0415-9  (SCI, if=3.252, Q2).  

    [15] Dan, D. H.*, Gong, J. X., Sun, L. M., & Cheng, W. (2016). Damping estimation by 2D dr_APES and its application to a real cable-stayed bridge. International Journal of Structural Stability and Dynamics, 16(05), 1550002. DOI: 10.1142/S0219455415500029, (SCI, if=2.957, Q2).  

    [14] Dan, D.*, Cheng, W., Sun, L., & Guo, Y. (2016). Fatigue durability study of high density polyethylene stay cable sheathing. Construction and Building Materials, 111, 474-481. DIO: 10.1016/j.conbuildmat.2016.02.109, (SCI, if=4.046, Q1).  

    [13] Dan, D. H.*, Xu, B., & Chen, Z. H. (2016). Universal characteristic frequency equation for cable transverse component system and its universal numerical solution. Journal of Engineering Mechanics, 142(4), 04015105. DIO:10.1061/(ASCE)EM.1943-7889.0001020 (SCI, if=3.125, Q2).  

    [12] Dan, D.*, Xu, B., Huang, H., & Yan, X. F. (2016). Research on the characteristics of transverse dynamic stiffness of an inclined shallow cable. Journal of Vibration and Control, 22(3), 812-825. DOI: 10.1177/1077546314531807, (SCI, IF=2.865, Q1).  

    [11] Dan, D.*, Sun, L., Guo, Y., & Cheng, W. (2015). Study on the mechanical properties of stay cable HDPE sheathing fatigue in dynamic bridge environments. Polymers, 7(8), 1564-1576. DIO: 10.3390/polym7081470. (SCI, IF=3.164, Q1).  

    [10] Dan, D.*, Xiao, R., Bai, W., & Wen, X. (2015). Study and design optimization of fiber bragg grating based wind pressure sensor. International Journal of Distributed Sensor Networks, 11(6), 745346. DIO: 10.1155/2015/745346 (SCI, IF=1.938, Q3).  

    [9] Dan, D.*, Chen, Y., & Xu, B. (2015). A PSO driven intelligent model updating and parameter identification scheme for cable-damper system. Shock and Vibration, 2015. DIO: 10.1155/2015/423898, (SCI, if=1.616, Q3).  

    [8] Dan, D.*, Sun, L., Yang, Z., & Xie, D. (2014). The application of a fuzzy inference system and analytical hierarchy process based online evaluation framework to the Donghai Bridge health monitoring system. Smart Struct. Syst, 14(2), 129-144. DIO: 10.12989/sss.2014.14.2.129, (SCI, if=4.581, Q1).  

    [7] Dan, D.*, Chen, Y., & Xiao, R. (2014). Dynamic properties analysis of a stay cable-damper system in consideration of design and construction factors. Earthquake Engineering and Engineering Vibration, 13(2), 317-326. DIO: 10.1007/s11803-014-0233-1, (SCI, if=2.810, Q3).  

    [6] Dan, D.*, Chen, Y., & Yan, X. (2014). Determination of cable force based on the corrected numerical solution of cable vibration frequency equations. Struct. Eng. Mech, 50(1), 37-52. DIO: 10.12989/sem.2014.50.1.037, (SCI, if=2.998, Q2).  

    [5] Dan, D. H.*, Chen, Z. H., & Yan, X. F. (2014). Closed-form formula of the transverse dynamic stiffness of a shallowly inclined taut cable. Shock and Vibration, 2014. DIO: 10.1155/2014/497670, (SCI, if=1.616, Q3).  

    [4] Dan, D.*, Yang, T., & Gong, J. (2014). Intelligent platform for model updating in a structural health monitoring system. Mathematical Problems in Engineering, 2014. DIO: 10.1155/2014/628619, (SCI, if=1.430, Q3).  

    [3] Dan, D.*, Gong, J., & Zhao, Y. (2014). Damped CAPES 2D spectral estimation for real-valued vibration signals. Shock and Vibration, 2014. DIO: 10.1155/2014/570347, (SCI, if=1.616, Q3).  

    [2] Xiao, R., Dan, D.*, & Cheng, W. (2014). On perturbation solutions for axisymmetric bending boundary values of a deep thin spherical shell. Mathematical Problems in Engineering, 2014. DIO: 10.1155/2014/903861, (SCI, if=1.430, Q3).  

    [1] Dan, D. H.*, Zhao, Y. M., Yang, T., & Yan, X. F. (2013). Health condition evaluation of cable-stayed bridge driven by dissimilarity measures of grouped cable forces. International Journal of Distributed Sensor Networks, 9(10), 818967. DIO: 10.1155/2013/818967, (SCI, if=1.938, Q3).  

    ✔️ 国际会议论文:

    [26] Xuelei Wen, Xingfei Yan, Danhui Dan. Study on Measurement Index of Transverse Collaborative Working Performance Based on Prefabricated Girder Bridges. The 2016 International Forum on Civil, Architecture and Transportation (IFCAT 2016). Shenzhen, China, September 17-18, 2016. ISSN:23525401(advances in engineering research, volume 98);ISBN:978-94-6252-253-4.

    [25] Dan-hui Dan, Rong XIAO, Wei CHENG. Study On A Novelty Wind Pressure Monitoring Technology In Civil Engineering Infrastructure. Proc. of SHMii-6, Hong Kong, China, Dec. 9th-11th, 2013.

    [24] Dan-hui Dan, Tong YANG and Jiongxin GONG. Study on intelligent platform of model updating for the health monitoring system. Proc. of SHMii-6, Hong Kong, China, Dec. 9th-11th, 2013.

    [23] Dan-Hui Dan, Yi-Ming Zhao, Tong Yang and Xing-Fei Yan.Health Condition Evaluation of Cable-Stayed Bridge Driven By Dissimilarity Measures of Grouped Cable Forces. The 2013 World Congress On Advances In Structural Engineering And Mechanics (ASEM13), September 8 - 12, 2013, Int’l Convention Center Jeju, Jeju, South Korea.

    [22] Dan-hui Dan, Yiming Zhao, Tong Yang, Xingfei Yan. Research On Software Platform Of Bridge Health Monitoring System Based On Java Ee And Scientific Computing Engine. the 8th International Workshop on Structural Health Monitoring,Stanford University,  September 13th to 15th, 2011.

    [21] Dan-hui Dan, Sun Limin. Min Zhihua. A temporal multi-scale analysis based bridge health divide-and-conquer monitoring and diagnosis strategy. The Fifth International Conference on Bridge Maintenance, Safety and Management (IABMAS2010) , Philadelphia, Pennsylvania, USA, July 11-15 (Sunday through Thursday), 2010.

    [20] Danhui DAN, Yiming Zhao, Tong Yang, Xingfei Yan. Research on software platform of bridge health monitoring system based on Java EE and scientific computing engine. Proceedings of The 8th International Workshop on Structural Health Monitoring Stanford University 2011.

    [19] Limin SUN, Zhi Sun, Danhui DAN. Research and Application of Structural Health Monitoring System for Large Span Bridges in China. (JSCE  invited paper)

    [18] Danhui Dan, Limin Sun, Zhifang Yang, Daqi Xie. An FIS and AHP based on line evaluation system on Donghai Bridge. Proceedings the Fourth International Conference on Bridge Maintenance, Safety and Management. 2008.7.

    [17] Danhui Dan, Sun Limin, Meng Xiaolin, Daqi Xie. The statistical investigation on one year GPS monitoring data from Donghai Bridge Health Monitoring System. Proceedings the Fourth International Conference on Bridge Maintenance, Safety and Management. 2008.7

    [16] Limin Sun, Zhihua Min, Danhui Dan. Correlation analysis on long term monitoring data of Donghai Bridge. Proceedings the Fourth International Conference on Bridge Maintenance, Safety and Management. 2008.7.

    [15] Danhui Dan, Limin Sun, Wei Cheng. The application research of the soft-computation arithmetic at civil engineering SHM. Proceedings of the 2nd international conference on strctureal health monitoring and intelligent infrastructure. accepted,  9/2004,ToKYo,Japan.

    [14] Danhui Dan, Limin Sun, Jun Chang. Bridge Health Monitoring Virtual Laboratory (BSHMVL)-An Platform Level Software, Framework and Developing. 3rd China-Japan-US Symposium on Structural Health Monitoring and Control. October 13-16, 2004, Dalian University of Technology, Dalian, China.

    [13] Danhui Dan, Limin Sun, Wei Cheng and Ye Xia. General Evaluation on Damage Index Based Modal Parameters. International Workshop on Integrated Life-Cycle Management of Infrastructures. December 9-11, 2004.HKUST,Hong Kong.

    [12] Limin SUN, Danhui DAN, Qiwei ZHANG, Qing YUE. Conceptual Design and Key Issues of Structural Health Monitoring System for Donghai Bridges. Proceedings of the 2nd Structural Health Monitoring and Intelligent Infrastructure. 16-18 November 2005, Shengzhen, China.

    [11] Danhui DAN, Limin SUN,Jianhua LI. Structural damage analysis for SHM system design of bridge. Proceeding of the 2nd Structural Health Monitoring and Intelligent Infrastructure. 16-18 November 2005, Shengzhen, China.

    [10] Danhui DAN, Limin SUN. Discussion on Bridge Health Monitoring Research and Application on Donghai Bridge bridge (For ISSEYE’06, The Ninth International Symposium on Structural Engineering for Young Experts, August 18-21 2006, Fuzhou & Xiamen, China.

    [9] Danhui DAN, Limin SUN,Jianhua LI. Structural damage analysis for SHM system design of bridge under the losing of pretension condition bridge (IABMAS’06, The third International Conference on Bridge Maintenance, Safety, and Management. July 16-19, 2006, Porto, Portugal.

    [8] Danhui Dan, Limin Sun, Zhihua Min. Stochastic modal parameters identification by Frequency-Domain Spectrum-Driven methods. World Forum on Smart Materials and Smart structures Technology, May 22-27,Chongqing & Nanjing, China.

    [7] Danhui Dan, Yang wang, Limin Sun. Applying online identification on Donghai Bridge anywhere, anytime, and anyway. The 6th International Workshop on Structural Health Monitoring Stanford University 2007.

    [6] Chen Wei, Danhui Dan, LiminSun. Assessment on Safety and Durability of Bridge Cable System by Using ANFIS. Health Monitoring of Structure Material and Environment, HMSME2007.

    [5] Guo Yanheng, Dan Huihui, Cheng Wei and Sun Limin. Strain Analyses on HDPE Cable Sheathing of Xupu Bridge. Health Monitoring of Structure Material and Environment, HMSME2007.

    [4] Danhui Dan, Shengfeng Yuan, Yanheng Guo, Limin Sun, Wei Cheng. Mechanical analysis of HDPE Cable Sheathing. ILDMI 2007.

    [3] Haiwen CAI,Chong HUANG,Jianxin GENG, Zuoren DONG, Zujie FANG.Limin SUN 2, Danhui DAN2Advanced Fiber Grating Corrosion Sensors for Structural Health Monitoring. 2nd International Conference on Structural Health Monitoring and Intelligent Infrastructure. 2005.

    [2] limin Sun,zhiyu luo, danhui dan.Moving load identification for bridge by using ANN Method. Proceedings of the First international conference on structural health monitoring and intelligent infrastructure.2003.

    [1] Dan Danhui eta. Bridge Health Monitoring Virtual Laboratory (BSHMVL)-An Platform Level Software, Framework and Developing. 3rd China-Japan-US Symposium on Structural Health Monitoring and Control.2004.

    ✔️ EI及其他:

    [33] 邓露; 王涛; 何钰龙; 孔烜; 淡丹辉; 毕涛; 车辆轴限对钢筋混凝土桥梁可靠度和加固费用的影响.中国公路学报 33卷 5期 92-100页

    [32] 徐斌, 淡丹辉. 服役斜拉索疲劳状态的全场域在线实时监测与智慧感知[J]. 中国公路学报, 2022, 35(6): 158-167. http://zgglxb.chd.edu.cn/CN/Y2022/V35/I6/158 

    [31] 韩飞,淡丹辉,赵磊,甄宁.一类浅垂度倾斜双梁系统动力特性研究. 振动工程学报  2019, v32 (1): 140~150

    [30] 王向杰,淡丹辉,闫兴非,程纬. 现场监测脉动风速的APES法幅值谱相位谱估计. 振动、测试与诊断  2019, v39 (2): 431~438(EI)

    [29] 淡丹辉,王向杰,闫兴非,夏烨. 基于实测的脉动风随机幅值谱模型. 同济大学学报(自然科学版)2018年04期 (EI)DOI:10.11908/j.issn.0253-374x.2018.04.005

    [28] 韩飞,淡丹辉,王虎. 考虑桥面不平度的铺装层响应研究.同济大学学报(自然科学版)2017年9月, 45(09):1284-1289.(EI)

    [27] 郑文昊,淡丹辉,程纬. 0.1µε级高分辨率FBG应变传感器的等强度梁标定方法. 光电子激光,2017年4月,28(4):365~370. DOI: 10.16136/j.joel.2017.04.0245 (EI)

    [26] 淡丹辉,孙利民. Mamdani型模糊推理系统在桥梁状态在线评估中的应用. 同济大学学报,2004,32(9).

    [25] 淡丹辉,孙利民. 一种推广的互功率谱模态识别法及其在SHM问题中的应用. 地震工程与工程振动,2004,24(4):56~61.

    [24] 淡丹辉,孙利民. 在线监测环境下土木结构的模态识别研究. 地震工程与工程振动. 2004,24(3):82~88.

    [23] 淡丹辉 ,孙利民. 结构损伤有限元建模中的阻尼问题研究.工程力学。2006,V23(9)

    [22] 淡丹辉 ,孙利民.结构动力有限元分析的阻尼建模及评价. 振动与冲击.2007,V26(2)

    [21] 李建华,淡丹辉 ,孙利民.PC连续梁桥健康监测的结构损伤分析.哈尔滨工业大学学报2005

    [20] 淡丹辉 ,何广汉.基于静力的智能桥梁结构的智能计算方案的研究. 桥梁建设. 2003

    [19] 淡丹辉 ,何广汉.一种大型结构试验数据处理系统西南交大学报.2003

    [18] 淡丹辉 ,何广汉.嵌入式智能桥梁结构总体研究(Ⅰ)——技术现状及总体方案规划. 四川建筑科学研究.2003

    [17] 淡丹辉 ,何广汉.嵌入式智能桥梁结构总体研究(Ⅱ)——自感知监测及自诊断子系统方案规划. 四川建筑科学研究.2003

    [16] 淡丹辉 ,何广汉.嵌入式智能桥梁结构总体研究(Ⅲ)——结构灾害响应控制系统. 四川建筑科学研究.2003

    [15] 淡丹辉 ,何广汉.基于静态应变测量的桥梁结构传感器优化布置法. 工程设计CAD与智能建筑.2002

    [14] 淡丹辉 ,何广汉.智能桥梁结构的智能计算方法及其初步实现.四川建筑科学研究.2002

    [13] 淡丹辉 ,何广汉.基于Win32 API模式的应变仪与PC通讯接口的软件实现.信息技术.2001

    [12] 淡丹辉 ,何广汉.钢筋混凝土构件均匀锈蚀、应力的藕合效应分析.西南交大学报.2001

    [11] 淡丹辉 ,王庆霖.钢筋混凝土结构锈胀裂缝的计算机模拟.西南交大学报.2000

    [10] 淡丹辉 ,何广汉.智能土木结构理论初探.四川建筑科学研究.2001

    [9] 孙汝蛟;孙利民;孙智;淡丹辉;刘小会; 一种新型光纤布喇格光栅振动传感器研究. 光子学报. 2007-01-30

    [8] 孙利民,孙智,淡丹辉,张启伟,于刚.我国大跨度桥梁结构健康监测系统研究与应用现状. 第十七届全国桥梁学术会议. 2006-04-01.

    [7] 淡丹辉,孙利民. 大型桥梁健康监测系统的实践与展望. 第四届全国公路科技创新高层论坛论文集.2008.5

    [6] 淡丹辉.智能桥梁结构的测控硬件解决方案构建. 中国土木工程学会第十届年会. 2002

    [5] 淡丹辉.嵌入式智能桥梁结构系统研究. 中国土木工程学会桥梁及结构工程分会第十五届年会论文集.2002

    [4] 淡丹辉,闫兴非. 桥梁健康监测技术研究与应用现状. 公路建设新技术新材料. 2011.10:209~213   (ISBN 978-7-5337-5334-4)

    [3] 淡丹辉,王一如,闫兴非. 既有公路网中小桥梁健康监测研究.  公路建设新技术新材料. 2011.10:214~218   (ISBN 978-7-5337-5334-4)

    [2] 淡丹辉,肖刚, 闫兴非,王君杰,孙利民. 航道桥梁主动防船撞预警系统研究. 桥梁船撞研究与工程应用. 2011.5: 537~545   (ISBN 978-7-114-09067-7)

    [1] 孙利民,淡丹辉,闵志华,聂功武. 桥梁结构安全监测与预警. 桥梁船撞研究与工程应用. 2011.5: 525~536    (ISBN 978-7-114-09067-7)

    授权专利

    ✔️ 发明专利:

    1. 淡丹辉,巩煚鑫,陈祖贺,孙利民. 无根型拉索阻尼器, 发明专利, 专利号:201310072697.9,授权公告日:2015年6月24日.

    2. 淡丹辉,徐斌,巩煚鑫,孙利民. 适用于斜拉索的豆荚雨线型阻尼器, 发明专利, 专利号:201310072762.8,授权公告日:2015年4月15日.

    3. 淡丹辉,陈祖贺,徐斌,孙利民.弯曲型拉索颗粒阻尼器, 发明专利, 专利号:201310072671.4,授权公告日:2015年6月24日.

    4. 淡丹辉,温学磊,赵一鸣.一种高灵敏度高分辨率高精度的光纤布拉格光栅阵列应变传感器, 发明专利, 专利号:CN105157591B,授权公告日:2018年6月5日.

    5. 淡丹辉,王向杰,夏烨.一种平稳脉动风幅值谱的确定方法, 发明专利, 专利号:CN107436975A,授权公告日:2017年12月5日.

    6. 淡丹辉,王千青.适用于高层建筑水平振动抑制的地砖型颗粒阻尼器, 发明专利, 专利号:CN107905604A,授权公告日:2018年4月13日.

    7. 淡丹辉,郑文昊,闫兴非.基于递归最小二乘法的实时加速度积分算法的动位移监测方法, 发明专利, 专利号:CN108197339A,授权公告日:2018年6月22日.

    8. 淡丹辉,葛良福.基于动态称重和多视频信息融合的全桥面移动荷载空间分布监测系统, 发明专利, 专利号:201810487110.3,授权公告日:2021年2月2日.

    9. 夏烨,雷晓鸣,孙利民,淡丹辉,程纬.自锁定内倾式应变传感器快速安装装置, 发明专利, 专利号:201910017792.6,授权公告日:2019年1月8日.

    10. 夏烨,黄洪葳,程纬,淡丹辉,孙智,吴彦,陈林,孙利民.一种桥梁活荷载识别优化系统, 发明专利, 专利号:201910061875.5,授权公告日:2019年1月23日.

    11. 夏烨,孙利民,淡丹辉.一种梁式桥安全监测与评估系统, 发明专利, 专利号:201910061474.X,授权公告日:2019年1月23日.

    12. 夏烨,淡丹辉,孙利民.中小跨径桥梁群结构性能预测装置及系统 , 发明专利, 专利号:201910061475.4,授权公告日:2019年1月23日.

    13. 淡丹辉,余学文.基于结构响应测量的箱梁桥防倾覆监测系统, 发明专利, 专利号:CN110276133A,授权公告日:2019年9月24日.

    14. 淡丹辉,余学文.一种适用于工程结构振动监测信号的在线递推谱分析方法, 发明专利, 专利号:CN110243562A,授权公告日:2019年9月17日.

    15. 吴昊延,王傲,程纬,淡丹辉,孙利民.一种用于装配式梁桥的可移动式快速化监测系统, 发明专利, 专利号:201910885921.3,授权公告日:2019年9月19日.

    16. 淡丹辉,李厚金.大跨悬索桥涡振事件的实时识别和监测预警方法, 专利号:CN 112629647 A,授权公告日:2021年4月19日.

    17. Dan D.: liH. Method for Rea-Time ldentification. Monitoring. and Early Warning of Vortex-Induced Vibratiorvent of Long-Span Suspension Bridge, US 2023/0314272 A12023-10-05

    18. 淡丹辉;李厚金基于带通滤波和随机减量法结合的桥梁动力特性长期跟踪识别方法,申请号:202311234119.0.

    ✔️ 实用新型专利:

    1. 白午龙,肖容,淡丹辉. 升降式梁体的桥梁结构, 实用新型, 专利号:201320011961.3,授权公告日:2013年6月26日.

    2. 肖容,淡丹辉,白午龙. 风压传感器标定装置, 实用新型, 专利号:201320013580.9,授权公告日:2013年6月26日.

    3. 淡丹辉,陈祖贺,徐斌,孙利民. 弯曲型拉索颗粒阻尼器, 实用新型, 专利号:201320104182.8,授权公告日:2013年8月28日.

    4. 淡丹辉,徐斌,巩煚鑫,孙利民. 适用于斜拉索的豆荚雨线型阻尼器, 实用新型, 专利号:201320104091.4,授权公告日:2013年8月28日.

    5. 淡丹辉,巩煚鑫,陈祖贺,孙利民. 无根型拉索阻尼器, 实用新型, 专利号:201320104109.0,授权公告日:2013年8月28日.

    6. 肖容,白午龙,淡丹辉. 深海高架隧道, 实用新型, 专利号:201320103058.x,授权公告日:2013年11月13日.

    7. 白午龙,肖容,淡丹辉. 免红绿灯十字路口单层高架桥, 实用新型, 专利号:201320115482.6,授权公告日:2013年08月14日.

    8. 淡丹辉,肖容,白午龙,程纬,赵一鸣. 光纤光栅风压传感器, 实用新型, 专利号:201320012780.2,授权公告日:2013年7月17日.

    9. 陈祖贺,淡丹辉,孙利民.自控电磁阻尼器, 实用新型, 专利号:201420087695.7,授权公告日:2014年8月13日.

    10. 陈祖贺,淡丹辉,孙利民.全方位斜拉索振动控制系统, 实用新型, 专利号:201420088431.3,授权公告日:2014年10月22日.

    11. 陈祖贺,淡丹辉,孙利民.弧形轨迹摩擦阻尼器, 实用新型, 专利号:201420088605.6,授权公告日:2014年10月22日.

    12. 淡丹辉,温学磊,赵一鸣.一种高灵敏度高分辨率高精度的光纤布拉格光栅阵列应变传感器, 实用新型, 专利号:CN204902780U,授权公告日:2015年12月23日.

    13. 王向杰,淡丹辉,贾鹏飞.风压传感器标定装置, 实用新型, 专利号:CN206990154U,授权公告日:2018年2月9日.

    14. 贾鹏飞,淡丹辉,王向杰.拱形光纤光栅风压传感器, 实用新型, 专利号:201720870870.3,授权公告日:2018年8月14日.

    15. 淡丹辉,王千青.适用于高层建筑水平振动抑制的地砖型颗粒阻尼器, 实用新型, 专利号:CN207092658U,授权公告日:2018年3月13日.

    16. 淡丹辉,王千青.高铁桥梁结构颗粒型被动减振系统, 实用新型, 专利号:201820088716.5,授权公告日:2018年1月19日.

    17. 夏烨,雷晓鸣,孙利民,淡丹辉,程纬.自锁定内倾式应变传感器快速安装装置, 实用新型, 专利号:201920029955.8,授权公告日:2019年10月18日.


    ✔️ 软件著作权:7 件

    其他成果

    ✔️ 官方登记科技成果

    1.     基于管养目的的公路桥梁健康监测关键技术研究,(排名1/17),2008-12-02

    2.      大型复杂桥梁结构健康监测及在线评估的关键技术研究,(排名2/22),2009-01-12

    3.     采用光纤光栅及无线智能传感技术的桥梁结构健康监测系统研究,(排名2/23),2005-11-22

    4.     大跨径斜拉桥拉索关键技术研究,(排名18/26注1),2017-12-14

    5.     桥区船舶通航全天候引导与船撞监控系统,(排名5/12),2012-05-16

    6.     九江大桥船撞风险评估与防撞系统方案研究,(排名6/23),2012-02-20

    7.     桥梁索缆结构安全性、耐久性评价体系与维护技术,(排名6/21),2009-06-25

    8.     上海市闵浦大桥健康监测系统初步设计方案研究,(排名4/15),2008-11-17

    9.     外海超长桥健康监测系统开发研究与应用,(排名3/3),2006-07-01



    1.     基于管养目的的公路桥梁健康监测关键技术研究,(排名1/17),2008-12-02

    2.      大型复杂桥梁结构健康监测及在线评估的关键技术研究,(排名2/22),2009-01-12

    3.     采用光纤光栅及无线智能传感技术的桥梁结构健康监测系统研究,(排名2/23),2005-11-22

    4.     大跨径斜拉桥拉索关键技术研究,(排名18/26注1),2017-12-14

    5.     桥区船舶通航全天候引导与船撞监控系统,(排名5/12),2012-05-16

    6.     九江大桥船撞风险评估与防撞系统方案研究,(排名6/23),2012-02-20

    7.     桥梁索缆结构安全性、耐久性评价体系与维护技术,(排名6/21),2009-06-25

    8.     上海市闵浦大桥健康监测系统初步设计方案研究,(排名4/15),2008-11-17

    9.     外海超长桥健康监测系统开发研究与应用,(排名3/3),2006-07-01


最后更新时间:--
Copyright © 2020 civileng.tongji.edu.cn 同济大学土木工程学院 All rights reserved.
地址:上海市四平路1239号同济大学土木工程学院    
邮编:200092